CEN CWA 16926-1

WORKSHOP August 2015

AGREEMENT

ICS 35.240.15; 35.200; 35.240.40

English version

Extensions for Financial Services (XFS) interface specification
Release 3.30 - Part 1: Application Programming Interface (API) -
Service Provider Interface (SPI) - Programmer's Reference

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the constitution of
which is indicated in the foreword of this Workshop Agreement.

The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National
Members of CEN but neither the National Members of CEN nor the CEN-CENELEC Management Centre can be held accountable for the
technical content of this CEN Workshop Agreement or possible conflicts with standards or legislation.

This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members.

This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania,

Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United
Kingdom.

. — |

EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITE EUROPEEN DE NORMALISATION
EUROPAISCHES KOMITEE FUR NORMUNG

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

© 2015 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Ref. No.:CWA 16926-1:2015 E

CWA 16926-1:2015 (E)

Table of Contents

EUuropean fOreWOrd...........coiiiriiinnss s s s s ssasssns s s ssmsssnssansmsssnssasssnsans 6
1. Background to Release 3.30 ... s 9
N £ =Y {1 - 4 T = 10
3. XFS (eXtensions for Financial Services) Overview..........ccccvirrrrnssnnssnsssssnnnns 11
3.1 ArChItECIUIE ..o 12
3.2 APl and SPI SUMMATY.......ciiiiiuiiiiie s s e rra s e na e rnnaes 15
B B 1= oY 04 - = 16
3.4 Unicode ENcoding SUMMAIYcc.cieiiiiiiiiiiicirecssesraseassnassmssrnssensnassnsssnsssnnsenssnssensssnssnns 17
4. Architectural and Implementation ISSUes.........ccoocierrcrrrrsirsrnrrr e 18
I I T o T 1 12 = Ve 1= 19
4.2 ServiCe ProViders ...t r s s e s s s r e e e na e e s e e e eaas 20
42.1 Service Provider FUNCHIONAIEYc.cveeuiuiiiiiiiie ettt sttt 20
422 Service Provider “PaCKaging™ccoccevoieueuririeeieirieee sttt sttt esss s eesse s s eeassesseensaeens 20
4.3 Asynchronous, Synchronous and Immediate Functions.........c..ccovviiiiiiiiii e ee e, 21
43.1 Asynchronous Functions
432 Synchronous Functions......
433 IMMEAIALE FUNCHIONS......iiieiiiieieie ettt ettt ettt sttt ettt b bbb b b sebetesesesebesesssesesssasesassnns
4.4 Processing APl FUNCHIONSc..iiiuiiiiiii e e e 23
4.5 OpPeniNg @ SESSIONiiuuiiieuiiriiirt i e 24
4.6 ClOSING @ SESSION ...uiiiiuuiiirieii i s e e e e e e ra e 25
4.7 Configuration INfOrmationcooiiiiiiiiii 26
4.8 Exclusive Service and DeViCe ACCESScieuiiiirrmuiiiirieiiiirr s 30
4.8.1 Lock Policy for Independent DEVICESovuvivirireriniririniniririsistsisestetststsee sttt eaesne 30
482 COMPOUNA DEVICES ...ttt ettt ettt senes 31
e T [T 0T o T U L 33
4.10 Function Status RetUrN ... e 34
4.11 Notification Mechanisms - Registering for Events...........cccocoviiiiiiii i vre s e e 35
4.12 Application Processes, Threads and Blocking Functionsccoeiiiiiiiieeiic v vvnceeen 37
4.13 Vendor Dependent MOdecccoiimiieiiiiiieiriirerrs s sns s s s s s e s s s sra s srassnasrmnsenssenssnnns 39
4.14 Memory ManagemeEnt.........oiveuiiiiuiiiiiii s e e e e e r s 40
4.15 Command Synchronizationcecoiiieiiiiiiiiir 42
4.16 Binary INterfacecocvuiiieiiieir 43
5. Application Programming Interface (API) Functionscccniricnnsnissnsnssnnnnns 44
5.1 WFSCancelASyNCREQUESEcoceuiiiiuiiiiiiii e s e e 46
5.2 WFSCancelBlockingCallcooueiiiiiiiiiiiii s e 47
L T AT T 0 1= 1 1« 48
LI R 1 T 0 T X 49
5.5 WFSASYNCCIOSE .cieuuiiiiiiuiiiiieiiiria s e e e e e ra e e e rna e rnnas 50
5.6 WFSCreate APPHANIe et er e e s e e e e e na e e s e e e 51

CWA 16926-1:2015 (E)

L A) =T 0 1= =Y T - 52
5.8 WFSASYNCDeregister.. ... 53
5.9 WFSDestroyAppHaNdIeoouiiiiii s s s e e 55
Lt LA ST =Y o) 56
5.11 WFSASYNCEXECULEceeuiiiiiiiii i rr s s e e e e e r s 58
5.12 WFSFreeReSUIt.........ciiiieiiiiirei i 60
L T) T = o o 61
5.14 WFSASYNCGEINTO... ... s e s e s e e s e e e s 63
5.15 WFSISBIOCKING ...ccuiiiiiieiieiiiiiieiriiressrs s s rnssa s s s s s e sm s sm s s san s ra s snassnnsenssennsnnsrnnsenssennsnnnrnnn 65
L T s o T 66
B5.17 WFEFSASYNCLOCK ...ceiiiiie e s s e s s s s s e s m s e s e s ra s sna s rma s emssransnarn s rn s ennsnnnsnnn 68
L0t T4 T o - o 70
L T sy L XYoo T o 73
L0 Iy s =Y o = - 76
5.21 WFSASYNCREGISIErciuiiieiiiii i e e e e s 77
5.22 WFSSetBIoCKINGHOOK.........ocieuiiiiiii i e e 79
5.23 WFFSSHartUp ...ccuiiiieiiiiiii i e e e e e 80
5.24 WFSUNhOOKBIOCKINGHOOKiiiieuiiiiiiiiiiiniein i iri i rrrnsr s 82
B.25 WFSURNIOCK ...t r s e e e s s e s s e s s ra s e s ra s e e s e aa s sema s enan s e nansennns 83
5.26 WFSASYNCUNIOCKcuiieiiieiiiiiiiiriiiseisasss s s se s s srasrasnassmnssansrassnassnnsenssenssnnsrensrnssenssnnnsnns 84

Service Provider Interface (SPI) Functions ... 85
6.1 WFPCancelASyNCREQUESEciiiieuiiiiiei i e 86
L0) o o0 o T 87
L T A o o 0 1= = e [o S 88
L T o = 1 920
6.5 WFPGEINFO. ... e e e e 92
LT) o o o T 94
L A4 b = o - o 95
6.8 W PREQISIEr ... iieuiiieiiei e 98
6.9 WFEFPSetTraceLleVel... ..o irr s s s s s s s s sr s rn s rm s e rra s rn s rnnsennsnnnsnnn 99
6.10 WFPUNIOAQASEIVICEceeiieieiieii s s s s e sr s s s s n s s s e s e sm s s s s s nansnnssmnsen 100
6.11 WFPURNIOCKiieiiiei i ie e et et e s e s e e s e s e e s e e s s ea s s rm s e ma s enassemassrennssnnnssnnnnns 101

ST 0T o3 o X o Al LU o] o2 4 o o 1= 102
7.1 WFMAIIoCateBuUuffer ..ot rr s rr s s e e s m s s s s na s na s emn e 102
7.2 WFMAIIOCAtEMOre...... ... ieeiiiieiieir s s s s e s s rn s ra s s s s se s sm s san s ransnansnnssnnsn 103
7.3 WFMFreeBURer ... et s e s s s s e e s s s s na s ma s emnnen 104
7.4 WFMGetTraceLevVvel... ... e s e e s s s e e mn e 105
T 1 LT 1= Y 106
7.6 WFMOUtPULTraceData.cc.oiiiuiiieiii it rr s e e s e e e e s e mn e e man s 107
7.7 WFMREIEASEDLL ... e e e e s s e s e ma s e e sena s s e s nan s snmnnss 108

CWA 16926-1:2015 (E)

A T A ST =Y A T4 PN 109
7.9 WFMSetTraceLeVel..... ... e r e e s s e s e s e s e s e rensnnrnnsmnrnnsmnnnn 110
8. Configuration FUNCLIONS ... sses e s s s sn s sns s s ssnnans 112
= T 4 03 o == 112
8.2 WFMCreateKeyoiieuiieiiiriiii st e e e e e 113
R T 4 1 T=Y 1= = 114
8.4 WFNMDeleteValUe......c.cc it e s s e s e s e s e s e re s e rensnare s smnrnnsmnsnnsmnnnn 115
8.5 WFMENUMKEY ...ccuiiieiiiieiiiiiiini i e e e e s e s e ra e s ra s nrnna s 116
8.6 WFMENUMVAIUE......ceieiei s s s s s e s e s e s e s s rensnarensnsransnnrnnsmnsnnsnnnnn 117
=20 A 1 (0 o T] 4 - 118
8.8 WFMQUEIYVAIUEieieeiieieeieeeeee e s s s e e s s e rea s s s e rns s s e rnan s s e rm s eenn s s snnasn s ennnssssnnnnnns 119
8.9 WFMSeEtVAlUE......ccuiieiiieiiiiiicircir s s s s s sm s sa s sra s se s rna s snsseassenssenssnsssnssnnnsnnnsnnsennren 120
L2 TR B F- 1 7= TR £ 1 Lo (U] = 121
9.1 W S RESULT ...t r e s e s ma s sa s sea s s e saa s eassennseassasssnsssnssnnnsnnnsnnsennren 121
9.2 WFSVERSION ...t s e e rma s ra s s ea s s e saa s eassennsenssasssnsssnssnnnsnnnennsennren 122
TR 1T (=TT T 1= 123
10.1 Command Completions and EVeNnts ... s 123
10.1.1 Command COMPIETION IMESSAZESvvereerereriririririririririrtetstststetetetetesetetssesetetesesesesesesesesesesesesesesesesesesssesesesens 123
JO0.1.2 EVENE MESSAZES....oviiiiiiiciciiccieiticeetieee ittt sttt st st ae s a s aenenne 123
10.2 WFS_TIMER _EVENT ...t st resrnsr s e s e s sn s s s e s e smn s s s ransna s snnsemnsennsennnnnns 124
10.3 WFS_SYSE _DEVICE _STATUSccei i iiriiiicirs s st s sa s s e s na s s sas s e sna s rnn s ennsennsenns 125
10.4 WFS_SYSE_UNDELIVERABLE_MSG........coouiiiiiiiiieiirc s s s s s snasm s smnsennsna s snn s nnnnenns 126
10.5 WFS_SYSE_APP_DISCONNECT ..ot rr s s s s e e 127
10.6 WFS_SYSE_HARDWARE_ERROR, WFS_SYSE_SOFTWARE_ERROR,
WFS_SYSE_USER_ERROR and WFS_SYSE_FRAUD_ATTEMPTcccoiiiiiiiiiriireer s 128
10.7 WFS_SYSE_LOCK_REQUESTED.........cceeouietiiteereeteiareessssssssssssesssssesssssssssssesssssesssssssnsanes 130
10.8 WFS_SYSE _VERSION _ERROR......ce it r s s e s e s s e s e s e s e s e s e e e enn s 131
L T 4 o O Yo [132
12. Appendix A -Planned Enhancements and Extensions........ccccocnvriiicnnennnns 135
12.1 Event and System Management.........c.coiuiiiiiiiiiiiiin e s re e e e e e 136
13. Appendix B - XFS Workshop Contactscccuerrnircmnnnnssnsnsssssssssesss e 137
14. Appendix C - ATM Devices Synchronization Flow..........cccccuecriiircmncricnscnsennnn. 138
14.1 Synchronized Media Ejectioncouiiieiiiiiiiii 138
15. Appendix D — Win64 Migration Considerations............ccovnnnnrrnrsnnssnsnsssssnnnns 139
16. Appendix D - C-Header files ... 140
16.1 XS APLH ...t s ra s e e re s ra s ranre s e rar e e e rnarnnernnrranrranrnnnrnnin 140
16.2 XFSADMIN.H ... s s s re e e re s ra s ra s sra s e sn s snsssansnassnnssnssennsnnsrnnsrnnns 146
T T =1 00 | o 147

16.4 XFSSPI.H

CWA 16926-1:2015 (E)

CWA 16926-1:2015 (E)

Europeanforeword

This CWA is revision 3.30 ofthe XFS interface specification.

This CEN Workshog Agreement has been drafted and approved by a Workshop of representatives of interested
parties on March 19" 2015, the constitution of which was supported by CEN following the public call for
participation made on 1998-06-24. The specification is continuously reviewed and commented in the CEN/ISSS
Workshop on XFS. It is therefore expected that an update of the specification will be published in due time as a
CWA, superseding this revision 3.30.

A list of the individuals and organizations which supported the technical consensus represented by the CEN
Workshop Agreement is available from the CEN/XFS Secretariat. The CEN XFS Workshop gathered suppliers as
well as banks and other financial service companies.

The CWA is published as a multi-part document, consisting of:

Part 1: Application Programming Interface (API) - Service Provider Interface (SPI) - Programmer's Reference
Part 2: Service Classes Definition - Programmer's Reference

Part 3: Printer and Scanning Device Class Interface - Programmer's Reference

Part 4: Identification Card Device Class Interface - Programmer's Reference

Part 5: Cash DispenserDevice Class Interface - Programmer's Reference

Part 6: PIN Keypad Device Class Interface - Programmer's Reference

Part 7: Check Reader/Scanner Device Class Interface - Programmer's Reference

Part 8: Depository Device Class Interface - Programmer's Reference

Part 9: Text Terminal Unit Device Class Interface - Programmer's Reference

Part 10: Sensors and Indicators Unit Device Class Interface - Programmer's Reference
Part 11: Vendor Dependent Mode Device Class Interface - Programmer's Reference
Part 12: Camera Device Class Interface - Programmer's Reference

Part 13: Alarm Device Class Interface - Programmer's Reference

Part 14: Card Embossing Unit Device Class Interface - Programmer's Reference

Part 15: Cash-In Module Device Class Interface - Programmer's Reference

Part 16: Card Dispenser Device Class Interface - Programmer's Reference

Part 17: Barcode Reader Device Class Interface - Programmer's Reference

Part 18: Item Processing Module Device Class Interface- Programmer's Reference
Parts 19 - 28: Reserved for future use.

Parts 29 through 47 constitute an optional addendumto this CWA. They define the integration between the SNMP
standard and the set of status and statisticalinformation exported by the Service Providers.

Part 29: XFS MIB Architecture and SNMP Extensions - Programmer’s Reference

Part 30: XFS MIB Device Specific Definitions - Printer Device Class

Part 31: XFS MIB Device Specific Definitions - Identification Card Device Class

Part 32: XFS MIB Device Specific Definitions - Cash Dispenser Device Class

Part 33: XFS MIB Device Specific Definitions - PIN Keypad Device Class

Part 34: XFS MIB Device Specific Definitions - Check Reader/Scanner Device Class
Part 35: XFS MIB Device Specific Definitions - Depository Device Class

Part 36: XFS MIB Device Specific Definitions - Text Terminal Unit Device Class

Part 37: XFS MIB Device Specific Definitions - Sensors and Indicators Unit Device Class
Part 38: XFS MIB Device Specific Definitions - Camera Device Class

CWA 16926-1:2015 (E)

Part 39: XFS MIB Device Specific Definitions - Alarm Device Class

Part 40: XFS MIB Device Specific Definitions - Card Embossing Unit Class

Part 41: XFS MIB Device Specific Definitions - Cash-In Module Device Class

Part 42: Reserved for future use.

Part 43: XFS MIB Device Specific Definitions - Vendor Dependent Mode Device Class
Part 44: XFS MIB Application Management

Part 45: XFS MIB Device Specific Definitions - Card Dispenser Device Class

Part 46: XFS MIB Device Specific Definitions - Barcode Reader Device Class

Part 47: XFS MIB Device Specific Definitions - Item Processing Module Device Class
Parts 48 - 60 are reserved for future use.

Part 61: Application Programming Interface (API) - Migration from Version 3.20 (CWA 16374) to Version 3.30
(this CWA) - Service Provider Interface (SPI) - Programmer's Reference

Part 62: Printer and Scanning Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version 3.30
(this CWA) - Programmer's Reference

Part 63: Identification Card Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version 3.30
(this CWA) - Programmer's Reference

Part 64: Cash Dispenser Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version 3.30 (this
CWA) - Programmer's Reference

Part 65: PIN Keypad Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version 3.30 (this
CWA) - Programmer's Reference

Part 66: Check Reader/Scanner Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version
3.30 (this CWA) - Programmer's Reference

Part 67: Depository Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version 3.30 (this
CWA) - Programmer's Reference

Part 68: Text Terminal Unit Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version 3.30
(this CWA) - Programmer's Reference

Part 69: Sensors and Indicators Unit Device Class Interface - Migration from Version 3.20 (CWA 16374) to
Version 3.30 (this CWA) - Programmer's Reference

Part 70: Vendor Dependent Mode Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version
3.30 (this CWA) - Programmer's Reference

Part 71: Camera Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version 3.30 (this CWA) -
Programmer's Reference

Part 72: Alarm Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version 3.30 (this CWA) -
Programmer's Reference

Part 73: Card Embossing Unit Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version 3.30
(this CWA) - Programmer's Reference

Part 74: Cash-In Module Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version 3.30 (this
CWA) - Programmer's Reference

Part 75: Card Dispenser Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version 3.30 (this
CWA) - Programmer's Reference

Part 76: Barcode Reader Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version 3.30 (this
CWA) - Programmer's Reference

Part 77: Item Processing Module Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version
3.30 (this CWA) - Programmer's Reference

In addition to these Programmer's Reference specifications, the reader of this CWA is also referred to a
complementary document, called Release Notes. The Release Notes contain clarifications and explanations onthe
CW A specifications, which are notrequiring functional changes. The current version of the Release Notes is
available online from http://www.cen.cu/work/areas/ict/ebusiness/pages/ws-xfs.aspx.

http://www.cen.eu/work/areas/ict/ebusiness/pages/ws-xfs.aspx

CWA 16926-1:2015 (E)

The information in this document represents the Workshop's current views on the issues discussed as ofthe date of
publication. It is furnished for informational purposes only and is subject to change without notice. CEN makes no
warranty, express or implied, with respectto this document.

The formal process followed by the Workshop in the development of the CEN Workshop Agreement has been
endorsed by the National Members of CEN but neither the National Members of CEN nor the CEN-CENELEC
Management Centre can be held accountable for the technical content of the CEN Workshop Agreement or possiblke
conflict with standards orlegislation. This CEN Workshop Agreement can in no way be held as being an official
standard developed by CEN and its members.

The final review/endorsement round for this CWA was started on 2015-01-16 and was successfully closed on
2015-03-19. The final text of this CWA was submitted to CEN for publication on 2015-06-19.The specification is
continuously reviewed and commented in the CEN Workshop on XFS. It is therefore expected that an update of the
specification will be published in due time as a CW A, superseding this revision 3.30.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights.
CEN [and/or CENELEC] shallnot be held responsible for identifying any or all such patent rights.

According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following
countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech
Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece,
Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal,
Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

Comments or suggestions fromthe users of the CEN Workshop Agreement are welcome and should be addressed
to the CEN-CENELEC Management Centre.

Revision History:

3.00 October 18, 2000 Initial release.

3.10 November 29, 2007 For a description of changes from version 3.00 to version 3.10
seethe API 3.10 Migration document.

3.20 March 2, 2011 For a description of changes from version 3.10 to version 3.20
see the API 3.20 Migration document.

3.30 March 19, 2015 For a description of changes from version 3.20 to version 3.30
seethe API 3.30 Migration document.

CWA 16926-1:2015 (E)

1. Backgroundto Release 3.30

The CEN/XFS Workshop aims to promote a clear and unambiguous specification defining a multi-vendor software
interface to financial peripheral devices. The XFS (eXtensions for Financial Services) specifications are developed
within the CEN (European Committee for Standardization/Information Society Standardization System) Workshop
environment. CEN Workshops aim to arrive at a European consensus on an issue that can be published as a CEN
Workshop Agreement (CWA).

The CEN/XFS Workshop encourages the participation of both banks and vendors in the deliberations required to
create an industry standard. The CEN/XFS Workshop achieves its goals by focused sub-groups working
electronically and meeting quarterly.

Release 3.30 of the XFS specification is based ona C API andis delivered with the continued promise for the
protection of technical investment for existing applications. This release of the specification extends the
functionality and capabilities of the existing devices covered by the specification, butit does notinclude any new
device classes. Notable enhancements include:

e Enhanced reporting of ShutterJammed Status and a new Shutter Status event for CDM, CIM and
IPM.

e Addition of a Synchronize command for all device classes,in order to allow synchronized action
where necessary.

e Directional Guidance Light support.

e Addition ofa CIM Deplete Command.

e Support for EMV Intelligent Contactless Readers.

e Support in PIN for Encrypting Touch Screen.

e PIN Authentication functionality.

e New PIN Encryption Protocols added for Chinese market.
e PIN TR34 standard supported.

CWA 16926-1:2015 (E)

2. References

1. XFS Service Classes Definition, Programmer’s Reference Revision 3.30

2. The Unicode Standard, Version 5.0, released on 9 November 2006. ISBN 0321480910

10

CWA 16926-1:2015 (E)

3. XFS (eXtensions for Financial Services) Overview

A key element of the Extensions for Financial Services is the definition ofa set of APIs, a corresponding setof
SPIs, and supporting services, providing access to financial services for Windows-based applications. The
definition of the functionality ofthe services, of the architecture, and of the API and SPI sets, is outlined in this
section,and described in detail in Sections 5 through 10.

The specification defines a standard set of interfaces such that, for example, an application thatuses the API setto
communicate with a particular Service Provider can work with a Service Provider of another conformant vendor,

without any changes.

Although the Extensions for Financial Services define a general architecture for access to Service Providers from
Windows-based applications, the initial focus of the CEN/XFS Workshop has been on providing access to
peripheral devices that are unique to financial institutions. Since these devices are often complex, difficult to
manage and proprietary, the development of a standardized interface to them from Windows-based applications and
Windows operating systems can offer financial institutions and their solution providers immediate enhancements to
productivity and flexibility.

11

CWA 16926-1:2015 (E)

3.1 Architecture

The architecture of the Extensions for Financial Services (XFS) systemis shown below.

XFES APIs
XFS Manager

Figure 2.1 - Extensions for Financial Services Architecture

The applications communicate with Service Providers, via the Extensions for Financial Services Manager, using the
API set. Most of these APIs can be invoked either "synchronously" (the Manager causes the application to wait
until the API's function is completed) or "asynchronously" (the application regains control immediately, while the
function is performed in parallel).

The common deliverable in all implementations of this Extensions for Financial Services specification is the
Extensions for Financial Services Manager, which maps the specified API to the corresponding SPI, then routes this
request to the appropriate Service Provider. Multiple implementations ofthe XFS Managerexist from different
vendors. For the definition of the binary interface, see section 4.16.

The Manager uses the configuration information to route the API call (made to a "logical service" or a "logical
device") to the proper Service Provider entry point (which is always local, even though the device or service that is
the final target may be remote). Note that even though the API calls may be either synchronous orasynchronous,
the SPI calls are always asynchronous.

The developers of financial services to be used via XFS and the manufacturers of financial peripherals will be
responsible for the development and distribution of Service Providers for their services and devices. A setup routine
for each device or service will also be necessary to define the appropriate configuration information. This
information will allow an application to request capability and status information about the devices and services
available at any point in time.

The primary functions of the Service Providers are to:
e Translate generic (e.g. forms-based) service requests to service-specific commands.

e Route the requests to either a local service or device, or to one on a remote system, effectively defining a
peer-to-peer interface among Service Providers.

e Arbitrate access by multiple applications to a single service or device, providing exclusive access when
requested.

e Managethe hardware interfaces to services or devices.

e Managethe asynchronous nature ofthe services and devices in an appropriate manner, always presenting
this capability to the XFS Managerand the applications via Windows messages.

The systemdesign supports solution of complex problems, often not addressed by current systems, by providing for
maximum flexibility in all its capabilities:

12

CWA 16926-1:2015 (E)

e Multiple Service Providers, developed by multiple vendors,can coexist in a single systemand in a
network. This is ensured by a standard messaging/data interface and a standard binary interface for the
XFS Manager.

e The service class definition is based on the logical functionalities of the service, with no assumption being
made as to the physical configuration. A physical device that includes multiple distinct physical
capabilities (referred to as a "compound device" in this specification) is treated as several logical services;
the Service Provider resolves any conflicts. Note also that a logical service may include multiple physical
devices (for example, a cash dispenserconsisting ofa note dispenserand coin dispenser).

e Similarly, a physicaldevice may be shared between two or more users (e.g. tellers), and the physical
device synchronization is managed at the Service Provider level

e The API definition and associated services provide time-out functionality to allow applications to avoid
deadlock of the type that can occur if two applications try to get exclusive access to multiple services at
the same time.

e The architecture is designed to provide a framework for future development of network and system
monitoring, measurement, and management.

Note that Figure 2.1 is a high level view of the architecture and, in particular, it makes no distinction between
Service Providers and the services they manage. This specification focuses on Service Providers rather than on
services, because the way a Service Provider communicates with a service is a vendor-specific internal design issue
that applications and the XFS Manager are unaware of. In fact, there are many different ways that Service Providers
can make services available to applications. Hence, this specification refers primarily to the Service Providers, since
these are the modules with which the XFS Manager communicates. There are occasional references to 'service'
where this is appropriate.

Example

Figure 2.2 below shows an XFS systemsupporting a set of financial peripherals. Note that in this framework the
XFS Manager interfaces directly with a set of Service Providers thatinterface directly with the physicaldevices.
Thus, the Service Providers are shown as implementing the Service Provider, service, and device driver functions,
although these are more likely to betwo or more separate layers. Many other configurations are possible.

WorkStation 1 WorkStation 2 WorkStation 3
Application Application Application
* * *
WOSA/XFS API Configura_tion WOSA/XFS API Configura.tion WOSA/XFS API Ccnfigura_tion
Information Information Information
WOSA/XFS WOSA/XFS WOSA/XFS
Manager Manager Manager
WOSAI/XFS SPI WOSA/XFS SPI WOSAI/XFS SPI
4 E *
A 4 A4 A 4
Passbook Passbook Passbook Magnetic Passbook
Printer Printer Printer 9 Printer
. . . Card Reader .
Service Service Service Service Provider Service
Provider Provider " Provider Provider
A
Vendor X Vendor Y Vendor Y Vendory Vendor X
* t * * *
h 4 h 4
R N
Passbook Passbook Magnetic Passbook
Printer Printer Card Reader Printer
Vendor X Vendor Y Vendor Y Vendor X
— /

Figure 2.2 - An XFS architecture example for a branch office banking system.

It should also be noted that one vendor's Service Providers are not necessarily compatible with anothervendor's, as

13

CWA 16926-1:2015 (E)

shown in Figure 2.2. If one application has to access the same service class as implemented by different vendors,a
Service Provider is installed for each vendor.

14

CWA 16926-1:2015 (E)

3.2 APl and SPI Summary

Sections 5 through 8 of this document present the interfaces thatallow a financial application to communicate in a
standard fashion with financial services and devices. The functions are at a sufficiently high level to allow for
seamless redirection to otherparts of the underlying operating system. A printer, for example, might rely ona setof
services provided by the operating system, butin order to handle the unique characteristics of a financial printer and
application, the Service Provider would pre-process the command, then redirect the derived commands to the
operating system's printing services. In other implementations, the printer might be supported entirely by XFS
service mechanisms, and not use the operating system printing services in any way.

The API is structured as sets of:

e Basic functions, such as StartUp/CleanUp, Open/Close, Lock/Unlock, and Execute, thatare common
to all the Extensions for Financial Services device/service classes,

e Administration functions, such as device initialization, reset,suspend orresume, used for managing
devices and services, and

e Specific commands, used torequestinformation abouta service/device, and to initiate device/service-
specific functions; these are sentto devices and services as parameters of the GetIlnfo and Execute basic
functions. These service-specific commands are specified in a set of separate specifications, one for each
service class.

To the maximum extent possible, the syntaxof specific commands that are used with nultiple device/service
classes is kept consistent across all devices. A primary objective is to standardize function codes and structures for
the widest possible variety of devices.

The SPI is kept as similar as possibletothe APL. Some commands are processed exclusively by the XFS Manager,
and so are not in the SPL, and there are minor differences in the specific parameters passed at the two interface
levels.

A typical scenario showing the usage of the APIs is shown below. This example illustrates the functions used to
print a form.

o StartUp (connects the application to the XFS Manager, including version negotiation)
e Open (establishes a session between the application and the Service Provider)

o Register (specifies the messages that the application should receive from the Service
Provider)

e Lock (obtains exclusive access to the service by the application)
e multiple Execute functions, passingone or more specific commands:
e Print Form
. etc.

o Unlock (releases exclusive access to the service by the application)

e Deregister (specifies that the application should no longer receive messages from the Service
Provider)

e Close (ends the session between the application and the Service Provider)
e CleanUp (disconnects the application from the XFS Manager)

Note that within a session (defined by Open and Close), an application may at any time change the classes of
messages it wishes to receive from the Service Provider (using Register), and may either Lock the service only for
specified periods (typically for each transaction), or for the entire session. Also,note that several of the commands
are optional, depending on how the device is being managed and shared (i.e. Lock/Unlock, Register/Deregister).

15

CWA 16926-1:2015 (E)

3.3 Device Classes

The classes of devices that belong to the version 3.30 ofthe Extensions for Financial Services are described in the
separate Service Class Definition Document.

16

CWA 16926-1:2015 (E)

3.4 Unicode Encoding Summary

If an XFS form or media file is UNICODE encoded then, consistent with the UNICODE standard [Ref. 2], the file
must start with a Unicode Byte Order Mark (BOM) and the UTF-16 encoded datathat follows must be in the byte
order indicated by the BOM. The two-byte BOM prefix in a text file indicates a Little Endian (OXFFFE) or Big
Endian (OXFEFF) notation.On a Windows operating systemthe byte order encoding is Little Endian.

If command parameter datais UNICODE encoded then this data will be UTF-16 encoded and the byte order must
be Little Endian. UNICODE command parameter will not start with a BOM.

17

CWA 16926-1:2015 (E)

4. Architecturaland Implementation Issues

The remainder of this document provides the technical specifications for the CEN eXtensions for Financial Services
(referred to hereafter as “XFS” for brevity).

In this specification, the functions of the XFS Application Programming Interface (API) and Service Provider
Interface (SPI) are always described in terms of providing a standardized, portable interface for applications to gain
access to Service Providers. This architecture allows Service Providers to deliver an open-ended set of capabilities
to financial applications based on the Microsoft Windows operating systems, including access to peripheral devices
unique to financial institutions. Since the first priority of the CEN members for XFS implementations has been to
provide this peripheral device access capability, the examples used relate primarily to device control and physical
input/output.

The key elements of the Extensions for Financial Services are the API definition and the corresponding SPI
definition, used by the XFS Manager to communicate with the Service Providers, together with the setof
supporting services provided by the XFS Manager. These elements are combined in an XFS implementation,
providing access to financial devices and services for Windows-based applications.

The specification defines a standard set of interfaces in order to provide multi-vendor interoperability: if an
application uses the API to communicate successfully with a Service Provider, it should work with another
conformant Service Provider of the same type, developed by anothervendor, without any changes. To work with
more than one hardware implementation of a device, an application must retrieve the device capability information
- this will allow the application to successfully interact with different variants of the same hardware device.
Applications thatuse the vendorspecific fields of XFS commands may not be able to interact successfully with
anothervendor’s conformant Service Provider. Applications should isolate vendorspecific access to devices in
order to maximize consistentdevice control across multiple device Service Provider implementations. Any Service
Provider that conforms to the SPI definition can work with a range of conformant applications.

As new versions of the XFS device classes are developed and released, changes to the device class interface
specifications are inevitable. Application exposure to these changes is controlled via the version negotiation process
described later in this specification. Applications need to be updated to support newreleases of XFS, butto
minimize the migration effort it is recommended that they should be developed in such a way that they can handle
additional error codes and new output literal values being added to existing commands within future versions of
XFS in a graceful manner. In addition, applications must release the memory for all events received, this includes
events that the application may be unaware at development time, i.e. the minimum processing for any XFS event
must be the release of the memory associated with the event.

For clarity, three prefixes are used in naming the function interfaces in XFS:

Function type: Prefix Functions called by Functions provided by

e API functions: WFS... e Applications e XFS Manager (and typically
passed through to WFP
functions)

e SPI functions: WFP... e XFS Manager e Service Providers

e Support/Configuration functions: WFM... e Service Providers e XFS Manager

e Applications

18

CWA 16926-1:2015 (E)

41 The XFS Manager

The XFS Manager provides overall management ofthe XFS subsystem. The XFS Manager is responsible for
mapping the API (WFS...) functions to SPI (WFP...) functions, and calling the appropriate vendor-specific Service
Providers. Note that the calls are always to a local Service Provider.

The XFS Manager determines which Service Provider to call using the logical name parameter of the WFSOpen or
WEFSAsyncOpen function. The logical name is the key providing access to the configuration information that
defines the Service Class (e.g. printer, cash dispenser, etc.), the Service Type (e.g. receipt printer, journal printer,
etc.) and the Service Provider (DLL file name), as well as additional information. The logical name must be unique
at least within each workstation. See Sections 4.7 and 8 for discussions ofconfiguration information access and
management.

The XFS Manager also provides the Support Functions (WFM...) defined in Section 7 and the Configuration
Functions (also WFM...) defined in Section 8.

Before an application is allowed to utilize any of'the services managed by the XFS subsystem, it must first identify
itself to the subsystem. This is accomplished using the WESStartUp function. An application is only required to
perform this function once, regardless of the number of XFS services it utilizes, so this function would typically be
called during application initialization. Similarly, the complementary function, WEFSCleanUp, is typically called
during application shutdown. If an application exits oris shutdown without issuing the WESCleanUp function, the
XFS Manager does the cleanup automatically, including the closing of any sessions with Service Providers the
application has left open.

The XFS Manager’s binary interface is described in section 4.16.

19

CWA 16926-1:2015 (E)

4.2 Service Providers

Each XFS service, for each vendor,is accessed viaa service-specific module called a Service Provider. For
example, vendorA's journal printer is accessed via vendor A's journal printer Service Provider, and vendor B's
receipt printer is accessed via vendor B's receipt printer Service Provider.

The following sections describe the functionality and packaging of Service Providers.

4.21 Service Provider Functionality

The primary functions of XFS Service Providers, working in conjunction with their respective services and/or
device drivers, are as follows. Note that how these functions are implemented is left to the Service Provider
developer.

Route the requests to the device or service, which may be on a remote workstation.
Service Providers may communicate with remote services in a variety of ways, such as NetBIOS, named pipes,
RPC (Remote Procedure Calls), Windows Sockets, proprietary network programming interfaces, etc.

Translate the generic requests to resource specific commands.
Note that this involves translation not just to service-specific commands, butto the commands native to the

resource being used. For example, the commands would notbe translated to "Receipt Printer Service"
commands, but to "Brand X, Model Y Receipt Printer" commands. For example, a driver may implement
device-specific translation tables or processes itself, or utilize standard operating systemdevice interfaces
(such as the Windows GDI), if they exist for the particular peripheral.

Arbitrate access to the resource by multiple applications.
Note that when a physical device includes multiple peripherals (for example, a receipt and journal printer in a
single unit), this may also include arbitration of the sub-devices.

Manage the interface to the resource.

When physical devices are being controlled, this includes managing the hardware interface to the device. For
example, the Service Providers may use standard operating systemdevice drivers, vendor-written proprietary
device drivers, etc.

Manage the asynchronous nature ofthe services in a consistent manner with respectto the applications.
The asynchronous nature ofthe SPI must always be presented back to the XFS Manager and the applications in

the form of Windows messages.

Error recovery.
In some kinds of software failures, such as an application crash, the Service Provider loses connection with the

application. In this situation, the Service Provider is responsible for an “orderly” shutdown ofthe session with
that application. In particular, the Service Provider generates a systemevent (see Section 4.11) indicating that
the connection was lost, and if any requests from the application were outstanding, it generates a systemevent
for each completion that would normally have generated a completion message to the application.

4.2.2 Service Provider “Packaging”

XFS Service Providers can be “packaged” into DLLs in a variety of ways:

20

One Service Provider per DLL; for example, a vendormight produce a journal printer DLL, a receipt printer
DLL, acashdispenserDLL, etc.

Multiple Service Providers per DLL; for example a vendormight producea DLL which contains the Service
Providers for all XFS-compliant printers.

All Service Providers for a specific vendor in a single DLL.

CWA 16926-1:2015 (E)

4.3 Asynchronous, Synchronous and Immediate Functions

Windows and XFS are built on an event-driven, asynchronous model. However, the XFS design allows an
application using its interfaces to behave in either an asynchronous orsynchronous manner. Thus the API supports
two versions of each of the appropriate functions (e.g. an application can requestto lock a service using either the
asynchronous WFSAsyncLock function or the synchronous WFSLock function).

Each XFS API function operates in one of three synchronization modes: asynchronous, synchronous orimmediate.
These are described in the following sections.

Note that the SPI is purely an asynchronous interface, so all SPI functions are either asynchronous orimmediate;
there are no synchronous SPI functions.

See Sections 5 and 6 for a summary ofthe API and SPI functions and their synchronization modes.

4.3.1 Asynchronous Functions

Asynchronousmode is used for operations which may take an indeterminate amount oftime to complete.
Performing an operation in an asynchronous, as opposed to a synchronous, mode allows the application to operate
in Windows' native event-driven, message-based manner. The processing of an asynchronous request (e.g.

WEFES AsyncExecute) is as follows:

e The application calls the XFS Manager.

e The XFS Manager generates a sequence number, the RequestID, assigns it to the request, and calls the Service
Provider.

e The Service Provider schedules the request for deferred processing and immediately returns to the XFS
Manager.

e The XFS Manager returns the RequestID to the application, with a status indicating that the request has been
initiated and is being processed.

e Atsome point, the Service Provider processes the deferred request.

e On completion, the Service Provider posts a completion message to the window handle specified by the
application in its original call. For flexibility, an application using asynchronous functions can specify a
different window for each request. The message contains a pointer to a WFSRESULT data structure defining
the results of the request, including the RequestID, the status code and the other relevant data.

4.3.2 Synchronous Functions

Synchronous mode is also used when an operation can take an indeterminate amount of time to complete, butthe
application wishes to handle the function in a sequential manner. The XFS Manager does not return control to the
application until the operation has completed, thus synchronous functions are referred to as blocking. Fach
synchronous callmade by an application is translated by the XFS Manager into its asynchronous SPIcounterpart
before being passed to the Service Provider.

If a blocking operation is not completed immediately in a Windows 3.x system, the XFS Manager executes a
Windows message loop on behalf of the calling thread, thereby keeping the Windows systemrunning. See Section

4.12 for a more detailed discussion ofprocess, threads and message loops. In Windows NT, the calling application
thread is blocked on request completion. A thread may have only one blocking XFS call outstanding at any one

time. See Section 4.12 for additional discussion ofthe management of synchronous functions, including
replacement of'the default message loop.

The processing of a synchronous request (e.g. WFSExecute) is as follows:

e The application calls the XFS Manager.

o The XFS Manager translates the request into an asynchronous SPI, generates a RequestID to track the request,
provides its own window handle to receive the completion message, and calls the Service Provider DLL.

e The Service Provider schedules the request for deferred processing and immediately returns to the XFS
Manager.

e The XFS Manager simulates synchronous processing as described above and in Section 4.12.

e At some point, the Service Provider processes the deferred request.

e On completion, the Service Provider posts a completion message to the window handle specified by the XFS
Manager. The message contains a pointer to a WFSRESULT data structure defining the results of the request,
including the RequestID, the status code and the other relevant data.

e The XFS Manager unpacks the information from the completion message into the appropriate parameters, and

21

CWA 16926-1:2015 (E)

returns them to the application, unblocking the original application request.

4.3.3 Immediate Functions

These are API functions that are not either asynchronous orsynchronous. Typically, immediate APIs are those

which do not communicate with a service or a physical device (or use the network in any other way) and are thus

guaranteed to complete immediately, whether successfully or not. They are handled in two ways:

e Processed entirely by the XFS Manager, which returns immediately to the application. Examples include
WESStartUp, and WFSSetBlockingHook.

e Passed by the XFS Manager to the Service Provider as an immediate SPI. The Service Provider processes the

request and immediately returns to the XFS Manager, which returns immediately to the application. Examples
include WFSCancelAsyncRequest and WFMSetTrace Le vel.

22

CWA 16926-1:2015 (E)

4.4 Processing APl Functions

When an application calls an XFS API function one of the following processing scenarios takes place. Note that
this classification is distinct from the API synchronization modes discussed above. See Section 6 for the mapping of
API functions to SPI functions.

e The function is converted by the XFS Manager directly into the corresponding SPI function (e.g.

WES AsyncRegister).

e The XFS Manager performs some preprocessing and then converts the function into the corresponding SPI
function (e.g. WFSAsyncExecute).

e The XFS Manager performs some preprocessing and then translates the API function to a different SPI
function, which it passes to the Service Provider. Most of the synchronous API functions (e.g. WFSLock) are
of this type, since they are translated to their asynchronous SPIequivalents.

e The XFS Manager performs some preprocessing and then translates the API function to multiple SPI functions,
which it passes to the Service Provider (e.g. WFSOpen).

e The function is completely processed inside the XFS Manager (e.g. WFSIsBlocking, WFSSetBlockingHook).

Service Providers (and sometimes applications) call the XFS Manager for the support functions defined in Section 7
and for the configuration functions defined in Section 8.

23

CWA 16926-1:2015 (E)

4.5 Opening a Session

Once a connection between an application and the XFS Manager has successfully been negotiated (via
WESStartUp), the application establishes a virtual session with a Service Provider by issuinga WFSOpen (or
WESAsyncOpen) request. Opens are directed towards “logical services” as defined in the XFS configuration. A
service handle (hService) is assigned to the session, and is used in all the calls to the service in the lifetime of the
session.

Note that applications may optionally chooseto explicitly manage the concept of “application identity” when they
need to use interdependent compound devices (see Section 4.8.2). This is achieved by using the
WFSCreateAppHandle function to get an application handle (h4pp), which is unique within the system. This
function can be called multiple times to obtain multiple unique handles. An application handle parameter is then
used in the WFSOpen function, directing the Service Provider to bind the specified application handle to the
session being initiated. This allows a single application process (potentially multi-threaded) to act as multiple
applications to the XFS subsystem, to allow effective use of interdependent compound devices. An example ofa
case in which this could beuseful is an application using the Multiple Document Interface (MDI); the application
could associate an application handle with each MDI child window. See Section 4.8.2 for additional discussion of
the use of application handles with compound devices. Note that neither service nor application handles may be
shared among two or more applications.

The actions performed by the XFS Manager on an open are as follows:

e Retrieves the configuration information defining the specified logical service, in order to determine the DLL
name of the Service Provider. The logical service name is the key to the configuration information.

e Loads the DLL containing the requested Service Provider, if it is not already loaded.

e Performs pre-processing and translation as necessary, depending on whether the synchronous orasynchronous
open API has been issued.

e Generates a unique service handle (hService) thatidentifies the session with the Service Provider thatis being
established, to be passed backto the application as a parameter.

e (Calls the Service Provider's WFPOpen function, passing the parameters needed.

The Service Provider does the following:

e Performs version negotiation, using the parameters specifying the SPI version requested by the XFS Manager,
and the service-specific interface version requested by the application.
Retrieves the configuration information.
Asynchronously establishes a session with the service specified in the configuration on the specified
workstation, if necessary, relying on the transport facilities provided.

e Upon completion of therequest, posts acompletion message (WFS_OPEN_COMPLETE), which goes to the
application fora WFSAsyncOpen call, and to the XFS Managerfor a WFSOpen call.

Note that even if the service is locked by anotherapplication, the open function succeeds, as defined in Section 4.8,
“Exclusive Service and Device Access.”

An application programmer has at least two obvious choices as to when to perform the WFSOpen (and the

complementary WFSClose) of the services it utilizes:

e Open the services during application initialization, keep them open,and close them during application
shutdown.

e Perform the open each time the service is required, utilize it, and immediately close it.

Each technique has its own advantages. Forexample, while the first example might provide better performance, the
second might be easier to program. In any case,upon a successfulcompletion of an open, the XFS subsystem
returns a service handle which must be used for all subsequent communication with the service.

Note that an application must perform an open for each logical service thatit wishes to utilize, even if the services
are of the same type. For example, if an application wishes to utilize two separate receipt printers, it must open two
separate logical services.

Furthermore, an application may need to open multiple logical services, even when a set of devices are housed in a
single device. For example, consider a compound printer which includes both a receipt and a journal printer. If the
application requires access to both the receipt and journal printer functions, it must open both a receipt logical
service and a journal logical service.

24

CWA 16926-1:2015 (E)

4.6 Closing a Session

When an application no longer requires the use of a particular service, it issues a WFSClose or WFS AsyncClose

request. The XFS subsystemthen closes that session as follows:

e The XFS Manager calls the Service Provider's WFPClose function.

e The Service Provider schedules the request for deferred processing, and returns immediately to the XFS
Manager. Note that at this point the service handle, hService, is no longer valid.

e Atsome point, the Service Provider processes the deferred close request, communicating with the service as
necessary to accomplish the request.

e Requests that were issued by the application before the close are executed.

e If the calling application has the service locked under the same iService, the Service Provider unlocks it
automatically (following the standard lock policy as defined in Section 4.8).

e The service cleans up its administrative information (removes WEFSRegister entries etc.).

If the XFS subsystemloses connection to an application, it closes the session as described above, and:
e An “application disconnect” event (SYSTEM_EVENT class) is generated.
e Since messages can no longer be posted to the application, any command completion and event notification

messages from this service for the application are converted to “undeliverable message” events
(SYSTEM_EVENT class).

Note that it is required that some applications have registered for systemevents, or these events are effectively not
reported.

When a Service Provider receives a Close request for a session, its behavior may vary as follows,

e When the session has no outstanding requests the Service Provider will complete the Close request (even if it is
executing a command from anothersession orhas outstanding deferred requests from anothersession).

e Whenthe session thatissues the close request has an outstanding request then the Service Provider will defer
the Close until all outstanding requests are complete.

25

CWA 16926-1:2015 (E)

4.7 Configuration Information

The XFS Manager uses its configuration information to define the relationships among the applications and the
Service Providers. In particular, this information defines the mapping between the logical service interface
presented atthe API (via logical service name) and the appropriate Service Provider entry points.

The configuration information also includes specific information aboutlogical services and Service Providers, some
of which is common to all solution providers; it may also include information aboutphysicalservices, if any are
present on the system, and vendor-specific information. The location ofthe information is transparent to both
applications and Service Providers; they always store and retrieve it using the configuration functions provided by
the XFS Manager, as described in Section 8, for portability across Windows platforms.

It is the responsibility of solution providers, and the developers of each Service Provider, to implement the
appropriate setup and management utilities, to create and manage the configuration information aboutthe XFS
subsystemconfiguration and its Service Providers, using the configuration functions.

These functions are used by Service Providers and applications to write and retrieve the configuration information
for an XFS subsystem, which is stored in a hierarchical structure called the Windows Registry. The structure and
the functions are based on the Win32/Win64 Registry architecture and API functions, and are implemented in
Windows NT/98 and future versions of Windows using the Registry and the associated functions.

Each nodein the configuration registry is called a key, each having a name and (optionally) values. All values
consist of a name and data pair, both null-terminated character strings. There are two logical groupings of XFS
Registry information; local PC dependent configuration information and userdependent configuration information.

The local PC dependent configuration information is stored beneath the following Registry key.

HKEY_LOCAL_MACHINE

SOFTWARE

XFS

User dependent configuration information is stored in the HKEY USERS section of the Registry.

HKEY_USERS

Default or
User ID

XFS

26

CWA 16926-1:2015 (E)

Within the local PC dependent configuration information are stored the following XFS related keys;

e XFS MANAGER - Beneath this key are values and/orkeys for information that the XFS Manager creates and
uses.

e SERVICE PROVIDERS - Beneath this key is a key for each XFS compliant Service Provider.

e PHYSICAL SERVICES - Beneath this key are physical attachment configuration information, defined by the
solution provider.

e MANAGEMENT PROVIDERS - Reserved for XFS SNMP Management. Beneath this key is a key for each
XFS SNMP Managed Service.

Within the user dependent configuration information is stored the following LOGICAL SERVICES key:
e [OGICAL SERVICES - Beneath this key is defined a key for each XFS logical service (i.e.: the
IpszLogicalName parameter of the WFSOpen, WESAsyncOpen and WFPOpen functions).

The configuration functions provide the capabilities to create, enumerate, open and delete keys, and to set, query
and delete values within each key. Vendor-provided configuration utility programs setup the registry structure and
its contents, using these functions. Configured Registry values and keys define how the XFS subsystem, services
and providers are configured. These are used by the XFS Manager, applications and Service Providers. Note that
vendor-specific information may be added to any key in this structure, using optional values.

The figure below illustrates the full structure of the local PC dependent configuration information.

HKEY_LOCAL_MACHINE

SOFTWARE

\
XFS

XFS_MANAGER SERVICE_PROVIDERS PHYSICAL_SERVICES| (MANAGEMENT_PROVIDERS

XFS XFS SP SP PS PS MP MP
Info 1 Info N Info 1 Info N Info 1 Info N Info 1 Info N

The XFS_ MANAGER key has the following optional values:

e TraceFile the name of'the file containing trace data. If this value is notset in the
configuration, trace datais written to the default file path\name
C\XFSTRACE.LOG.

o ShareFilename the name of the memory mapped file used by the memory management

functions of the XFS Manager.

e ShareFilesize the size of the memory mapped file used by the memory management
functions of the XFS Manager.

e ShareMapAddr the address ofthe beginning of the XFS Manager Shared Memory. Care
should be taken when using this value to control the load address of shared
memory. Whenused,the address chosen should be consistently accessed
across all XFS processes. A value of zero will result in the shared memory
allocation being dynamic.

Some additional values may also be defined in the implementation ofthe XFS Manager. Please refer to the related
document for more information.

27

CWA 16926-1:2015 (E)

Beneath the SERVICE PROVIDERS key there are keys for each individual Service Providers, thekeys are the
Service Provider names. Each of these keys has three mandatory values:

o dllname The name of the file containing the Service Provider DLL.
e vendor name The name of the supplier of this Service Provider.
e version The version number of this Service Provider. This version number is a

vendorspecific Service Provider implementation version; it has no
relation to the version of the standard.

The PHYSICAL SERVICES keys are fully vendor dependent.

Beneath the MANAGEMENT PROVIDERS key there are keys for each XFS SNMP Managed Service, the keys
are the managed service names. The structure of these keys is defined within the XFS MIB Architecture
specification.

The figure below illustrates the full structure of the user dependent configuration information.

HKEY_USERS

Default or
User ID

XFS

LOGICAL_SERVICES

Hﬁ

LS LS
Info 1 Info N

Beneath the LOGICAL SERVICES keys there are keys for each individual Service Provider the keys are the
logical service names: Each ofthese keys have two mandatory values:

o class the service class of the logical service; (seethe Service Class Definition
Document for the standard values)

e provider the name of'the Service Provider that provides the logical service (the key
name of the corresponding Service Provider key)

The ‘User 1d” key is only applicable to the Windows Terminal Server platform. The ‘User Id’ is the username
associated with the session in which the application is executing.

An example of the content of the configuration information for is shown below. See Section 8 for the definitions of
the configuration functions.

28

CWA 16926-1:2015 (E)

[HKEY _USERS\.DEFAULT\XFS\LOGICAL SERVICESWM y Currency Dispenser]
"class"="CDM"
"provider"="CDM"

[HKEY USERS\DEFAULT\XFS\LOGICAL SERVICESWM yCardReader]
"class"="IDC"
"provider"="IDC"

[HKEY USERS\.DEFAULT\XFS\LOGICAL SERVICESWM yJournalPrinter]
"class"="PTR"
"provider"="JPTR"

[HKEY USERS\.DEFAULT\XFS\LOGICAL SERVICES\M yPassbookPrinter]
"class"="PTR"
"provider"="PPTR"

[HKEY USERS\.DEFAULT\XFS\LOGICAL SERVICESWM yPinpad]
"class"="PIN"
"provider"="PIN"

[HKEY USERS\.DEFAULT\XFS\LOGICAL SERVICES\M yReceiptPrinter]
"class"="PTR"
"provider"="RPTR"

[HKEY USERS\.DEFAULT\XFS\LOGICAL SERVICES\My StatementPrinter]
"class"="PTR"
"provider"="SPTR"

[HKEY LOCAL MACHINE\SOFTWAREXFS\SERVICE PROVIDERS\CDM |

"dllname"="C:\ Program Files \ABCTech\XFS PRODUCT\XFSCDM Service Provide\ABCTech 9827SP.dIl"
"vendor name"="ABCTech Corporation"

"version"="1.0.0"

[HKEY_LOCAL_MACHINE\SOFTWARE\XFS\SERVICE_PROVIDERS\IDC]

"dllname"="C:\Program Files\ABCTech\XFS PRODUCT\XFSIDC Service ProvideABCTech 1212SP.dll"
"vendor _name"="ABCTech Corporation"

"version"="1.0.1"

[HKEY LOCAL MACHINE\SOFTWARE\XFS\SERVICE PROVIDERSUPTR]

"vendor name"="ABCTech Corporation"

"dllname"="C:\Program Files\ABCTech\XFS PRODUCT\XFSPTR Service Provide\ABCTech_9001SP.dll"
"version"="1.2.4"

[HKEY LOCAL MACHINE\SOFTWARE\XFS\SERVICE PROVIDERS\PIN]

"dllname"="C:\Program Files\ABCTech\XFS PRODUCT\XFSPIN Service ProvidenABCTech_1234SP.DLL"
"vendor name"="ABCTech Corporation"

"version"="1.34.8"

[HKEY_LOCAL_MACHINE\SOFTWARE\XFS\SERVICE_PROVIDERS\PPTR]

"dllname"="C:\Program Files\ABCTech\XFS PRODUCT\XFSPTR Service ProvidenABCTech_2411SP.dIl"
"vendor _name"="ABCTech Corporation"

"version"="1.2.3"

[HKEY LOCAL MACHINE\SOFTWARE\XFS\SERVICE PROVIDERS\RPTR]

"dllname"="C:\Program Files\ABCTech\XFS PRODUCT\XFSPTR Service ProvidenABCTech_1028SP.dIl"
"vendor name"="ABCTech Corporation"

"version"="1.9.4"

[HKEY_LOCAL_MACHINE\SOFTWAREXFS\SERVICE _PROVIDERS\SPTR]

"dllname"="C:\Program Files\ABCTech\XFS PRODUCT\XFSPTR Service ProvidenABCTech_1028SP.dll"
"vendor name"="ABCTech Corporation"

"version"="1.9.4"

Notes:

1) Inthe aboveexample thereceipt and statement printer services are all implemented through a single
physical printer and Service Provider DLL. The Service Provider determines which type of service the
application has requested by the vendor specific configuration information.

29

CWA 16926-1:2015 (E)

4.8 Exclusive Service and Device Access

This section describes how application access to services and devices is handled by XFS subsystems, using the lock
facility. It discusses the meaning of timers within the context ofa lock request and issues that arise when multiple
applications haveissued lock requests. It also describes how requests that were submitted to the Service Provider
prior to a lock request are managed. Furthermore, it describes how compound devices (physical devices that include
two or more logical devices, such as a passbookprinter that also includes a magnetic stripe reader) are handled.

Typically, an application requires exclusive access to a particular service when it is about to utilize it, particularly in

combination with other services. For example, an application may need touse a PIN pad, magnetic stripe reader,
receipt printer and journal printer to complete a transaction. The application must be guaranteed that it has access to
all the devices before starting on the transaction, and that no other application will be able to use them until the

transaction is complete and it has explicitly released them. This is accomplished by using the WFSLock (or
WFESAsyncLock) function and the complementary WESUnlock function.

An application should act in a cooperative manner when locking a service, by keeping it locked for the minimum
time period that it requires exclusive access to the service. Typically, this means locking a set of services,
performing a series of requests to the services to complete a transaction, and immediately unlocking the services.

However, an application which has obtained a lock on a device will be informed via the

WEFS SYSE LOCK REQUESTED systemevent whenever another application requests a lock on the device (i.e.
potentially multiple lock requestevents will occur - one for each request by another application). Therefore an
alternative strategy is for the application to register for system events and unlock the device only when it receives
the event notification that anotherapplication has requested a lock on the device.

Applications must use appropriate techniques to avoid deadlock when locking multiple services, typically by
making use of the timeout parameter in the lock functions.

Also, note that there are cases in which exclusive access is not a requirement, so thatit is not always required that
an application lock a service before issuing execute operations to it.

The lock policy describes the rules that services use in managing lock requests. In the description of this policy,
XFS requests are categorized into three types:

o Non-deferred: Requests thatcan be processed completely by a service as soon as they arrive (e.g. WFPOpen,
WFPRegister and most WFPGetInfo calls.

o Deferred: Requests which may notbe able to be processed completely as soon as they arrive, typically because
they require hardware and/or operator interaction (e.g. WFPExecute and some WFPGetInfo calls).

o Lock: WFPLock calls.

The lock policy is described first for independent devices, i.e. logical services that correspond to devices whose
operation is not interdependent with any other (even though they may be housed in the same physical enclosure).
The following section describes the special requirements involved in managing compound interdependent devices.

4.8.1 Lock Policy for Independent Devices

The following describes how the categories of requests are handled, in each of the lock states of a service. Note that
although the description refers to queues and otherimplied implementation characteristics, this is only for
convenience; no particular implementation techniques are required.

Service state: UNLOCKED
e Non-deferred requests are processed on arrival.
e Deferred requests are placed in the deferred queue and processed FIFO.
e Whena WFPLock requestarrives:
e The lock requestis placed in the lock queue.

e The service state changes to LOCK_PENDING.

30

CWA 16926-1:2015 (E)

Service state: LOCK PENDING

All requests in the deferred queue that arrived before the pending lock request are processed FIFO; after
all are processed, thelock queue is processed. Note that depending on the nature of the service/device,
lock requests may be granted FIFO or in some other order, e.g. when an operator takes an action such as
pressing a station button.

When a lock request has been granted:
e The service state changes to LOCKED.

e Anyother pending lock requests from the same “owner” are also granted. (The owner is the same if it
comes from the same workstation and has the same application and service handles.)

Service state: LOCKED

Arriving requests (except lock requests)are handled as follows:

e Non-deferred requests are processed on arrival.

e Deferred requests that are not WFPExecute requests are placed in the deferred queue.
e WFPExecute requests from the owner ofthe lock are placed in the deferred queue.

e WFPExecute requests thatare not from the owner of the lock are rejected (with error code
WFS _ERR LOCKED).

e WFPUnlock and WFPClose requests from the owner of the lock are placed in the deferred queue.
(Note thata close request to a locked service is treated as an unlock followed by a close.)

e WFPUnlock and WFPClose requests that are not from the owner of the lock are treated as non-
deferred requests,i.e. processed on arrival.

The deferred queueis processed FIFO.
When a WFPLock requestarrives:
e Ifit is from the owner of the lock, it is granted.

e Ifit is not from the owner of thelock, it is placed in the lock queue,a
WFS_SYSE LOCK REQUESTED eventis posted to the owner of the lock.

When a WFPUnlock or WFPClose requestis processed from the deferred queue, or the connection
between the service and the owner of the lock is lost:

e Ifthelock queueis notempty, the service state changes to LOCK_PENDING.
o Ifthe lock queueis empty, the service state changes to UNLOCKED.

Note that most requests include a timeout parameter which must be managed appropriately, i.e. when the specified
time expires, the requestis rejected with the error code WFS_ERR TIMEOUT. The timeout parameter is
particularly important with the WFSLock request, since it allows applications to seta maximum time to wait for a
lock to be granted, to allow prevention of deadlock situations when requesting locks of multiple devices.

4.8.2 Compound Devices

Compound devices are very common in the financial services industry. For the purposes ofthis discussion, there
are three types of compound devices:

Two or more separate logical devices thatshare a physical housing (or perhaps some otherattribute), but
function completely independently of one another.

Two or more distinct logical devices thatare functionally interdependent in some way, such as a journal printer
and passbookprinterthat use the same print head mechanism.

Two or more logical devices thatare simply different logical views of'a single physical device, such as a single
printer thatis managed as two separate logical devices, a document printer and a passbook printer.

The first of these types has no special significance from the XFS point of view. Each ofthe devices is managed as a
separate logical and physical device, and the systemconfiguration issues (e.g. making sure that devices that are
packaged togetherare assigned to the same workstation) are left to application utilities outside the scope of this

31

CWA 16926-1:2015 (E)

specification.

The latter two types are treated identically in an XFS system. When any one of a set of interdependent logical
devices that forms a compound device is locked, all the other logical devices in that compound device are also
implicitly locked on behalf of the requesting application. (The specific policy is described below.) If the same
application (see the discussion of “application identity” below and in Section 4.5) explicitly requests alock of
anotherof these logical devices, the lock is granted. In order to allow the application to “know” thatthe devices are
part of a compound device, and therefore interdependent,the WFSLock function returns an array of service
handles, defining the set of other devices within the compound device that are now explicitly locked by the
application. This allows the application to manage its use of these devices accordingly. Normally, it must use them
in a strictly sequential manner to avoid any possible conflicts, butif it has some special knowledge of how the
devices are related, it may be able to multiplex requests in some ways.

Note that an application can also determine whether a device is compound by using the device capabilities query
function of WFS Getlnfo.

There are many different ways in which programmers can make use of multiple threads and/orprocesses in
financial applications. Each XFS service can be controlled from its own thread; all services can be controlled from
a single thread, with otherthreads/processes used forotherapplication functions; several identical threads can
handle all open services as needed; etc. In some of these models, the “user” of a service could be considered to be
the process as a whole; in other models, the “user”is a single thread. The XFS design allows for both models by
providing the programmer the capability to explicitly control the “identity” of an application. The programmer can
make all the threads in a process appear to a Service Provider as one “application,” identify each thread as a
different “application,” or create some hybrid of these approaches, allowing interdependent compound devices to be
managed correctly no matter what application architecture is used.

In order to allow this flexibility in application architecture, the “identity” of an application can optionally be
managed explicitly usingthe concept of application handles. An application handle (2A4pp) is created using the
WFSCreateAppHandle function, and is guaranteed unique within the system. The WFSOpen function takes an
optional application handle parameter which is bound to the service handle (AService) returned by the open
function. This approach allows applications that use interdependent compound devices to be implemented with any
combination of single or multiple processes and/orthreads, by explicitly managing an appropriate set of application
handles.If this facility is notused (indicated by the application using the value WFS _DEFAULT HAPP for the
hApp parameter in WFSOpen), the XFS subsystemautomatically treats each process as having a single, unique
application handle. See Section 4.5 for additional discussion of this topic.

The lock policy for interdependent compound devices uses the same rules as for independent devices, with some
additional constraints. In order to synchronize access via multiple logical services to a single physicaldevice, or to
interdependent devices, the service manages a single lock queue and a single deferred queue for the set of related
logical services. The additional constraints are:

Service state: LOCK PENDING

e Whena lock requesthas been granted to one of a set of related logical services:

e All the other related services in the set changeto a “reserved” state in which they are treated as being
in the LOCKED state for requests not from the owner.

e Anylock request from the owner for one of the reserved services is granted on arrival.

o Lock requests that are not from the owner of the reserved devices are placed in the lock queue.

Service state: LOCKED

e Anylock request from the owner for one of the reserved services is granted on arrival.
o Lock requests that are not from the owner of the reserved devices are placed in the lock queue.

e Note that if a WFPUnlock or WFPClose requestis processed for the service, and any other logical service
thatis related to this service is in the LOCKED state, then the service stateis setto “reserved,” not
UNLOCKED.

e Note also, that if a WFPUnlock or WFPClose requestis processed for the service, and the other logical

services that are related to this service are in the “reserved” state, then all these services change to the
UNLOCKED state.

32

CWA 16926-1:2015 (E)

49 Timeout

There are two fundamentally different time domains in a system, each having a different implication on the concept
of timeout:

e ‘“usertime” = real time; timeout here says simply “this job is taking too long” as defined by the application
and/orthe user (indicated by a WFS_ERR TIMEOUT error code).

e “service time” = thetime taken by the service request within the service; typically, the physicaldevice
operation (indicated by WFS_ERR DEV_NOT_ READY or WFS_ERR HARDWARE ERROR error
code).

In XFS systems, the service manages the latter, without needing any input from the application, since it “knows”
the characteristics of the device, and can generate a timeout event if the device takes too long, even if the
application timeout value (if any) has notbeen exceeded. Therefore, the timeout value provided in the API is
treated by the Service Provider as user/real time. If the time is exceeded, the Service Provider cancels the request
and returns a timeout event to the application. An application can also specify thata request should wait until
completion, no matter how long the request takes, by specifying the special value WFS_INDEFINITE WAIT.

33

CWA 16926-1:2015 (E)

4.10 Function Status Return

When an XFS API or SPI function call completes, it returns a value that either defines the completion status, or in
the case of asynchronous functions, the status ofthe initial processing of the request. When an asynchronous
function completes, the completion message includes the final status ofthe request. The return value of most
functions is a “result handle,” hAResult,of type HRESULT. hResultvalues are defined to be WFS_SUCCESS (zero)
for success; other values indicate the specific error that occurred, as defined in each function specification.

The XFS Manager and the Service Providers return status from a function call, in the form of an ZResult result
handle, in two manners:

e By returning an AResult value as the function return.

e By postinga completion message to the window specified in the request. The message contains a pointer to a
structure that includes the #Result.

The mechanism depends on the category of function being processed, as follows:

e Immediate API
The XFS Manager processes the request, and immediately returns a result handle. In some cases,the XFS
Manager calls the Service Provider to process the request, then returns the result handle from the Service
Provider to the application.

e Asynchronous API
Since the processing is performed in a number of steps, as described earlier, return status is generated at a
number of levels:

e The Service Provider performs any validations which can be processed immediately.

e Ifan error is detected,the Service Provider returns the ZResult to the XFS Manager, which immediately
returns it to the application.

e Otherwise, the requestis scheduled and an #Result of WFS_SUCCESS is immediately returned to the XFS
Manager, which immediately returns it to the application. This informs the application that the request has
been accepted and is being processed.

e Upon completion of the deferred request,a completion messageis posted to the application's window. This
message points to the structure that includes the #Result indicating the completion status ofthe request.

Synchronous API

e Since asynchronous APIcall is translated by the XFS Manager to an asynchronous SPI, the Service
Provider behaves the same as in asynchronous APIprocessing. Specifically, the Service Provider performs
any validations which can be processed immediately.

e Ifan error is detected, the Service Provider returns the AResult to the XFS Manager, which immediately
returns it to the application.

e Otherwise, the requestis scheduled and an #Resul/t of WFS _SUCCESS is immediately returned to the XFS
Manager, indicating that the request has been accepted and is being processed.

e Upon completion of the deferred request,a completion message is posted to the XFS Manager window.
The XFS Manager retrieves the AResult from the structure pointed to by the message and returns it to the
application.

34

CWA 16926-1:2015 (E)

4.11 Notification Mechanisms - Registering for Events

The WFSRegister and WFSDeregister functions (and their asynchronous counterparts) are used to register and
deregister the window procedures which are to receive Windows messages when particular unsolicited,
asynchronous events occur, either during request processing or at other times. In other words, they are used to
enable or disable the reception of event notifications. By providing notifications of this type to applications, the
requirement to poll for status is removed, and a simple method for implementing "monitoring" applications is
provided. Each WFSRegister call specifies a service handle (AService), one or more event classes,and an
application window handle (A Wnd) which is to receive all the messages of the specified class(es). The
corresponding SPI functions, WFPRegister and WFPDeregister, implement the API functions.

There are four classes ofevents:
e SERVICE EVENTS

e USER EVENTS

e SYSTEM EVENTS

e EXECUTE EVENTS

For the first three of these event classes, if a class is being monitored and an event occurs in that class,a message is
broadcastto every #Wnd registered for that class, containing the service handle of the session that the event is sent
to. The exception to this is the WFS_SYSE LOCK REQUESTED systemevent, this eventis posted only to the

application which owns the lock on the device. The events are generated when:
e The service status changes (SERVICE_EVENTS), e.g. a printer is suspended oris no longer available.

e The service needs an operation from the user to take place (USER_EVENTS), e.g. a device needs “abnormal”
attention, such as adding paper or tonerto a printer.

e A systemevent occurs (SYSTEM_EVENTS), e.g.a hardware error occurs,a version negotiation fails, the
network is no longer available or there is no more disk space.

The EXECUTE EVENTS class is different from the otherthree. These are events which occur as a normal part of
processing a WFSExecute command and they are always sent before the completion of the command. Examples
include the need to interact with the user or operator to request an action such as inserting a passbookinto a printer,
“swiping” a magnetic stripe card, etc. A message generated by one of these events is sent only to the application
thatissued the WFSExecute thatcaused the event, even though otherapplications are registered for

EXECUTE EVENTS. In this case an application is defined as all window handles associated with the sService
through a WFSRegister call requesting EXECUTE EVENTS. Note thatan application must explicitly register for
these events; if it has not, and such an event occurs, the eventis not deliverable and the WFSExecute completes
normally.

The logic of WFSRegister is cumulative: for a given service the number of notification messages sent may be
increased by specifying additional event classes. Since the XFS Manager does not keep track of what events the
application is registered for and the logic of the register/deregister mechanism is cumulative, the Service Providers
are responsible for implementing the logic of this process.

An application requests registration for more than one eventclass in a single call by using a logical ‘OR’:

hr = WFSRegister(hService,USER_EVENTS|SERVICE_EVENTS, hind);

Note that services always monitor their resources, regardless of whether any application has registered for event
monitoring or not. Issuing WESRegister simply causes aservice to send notifications to the Service Provider,
which, in turn, sends notifications to one or more applications.

To communicate to the XFS Manager that it no longer wishes to receive messages in one or more event classes,an
application can cancel any previous registration using the WEFSDeregister function. The logic of WFSRegister and
WESDeregister is symmetric: the application can deregister one or more classes of events monitored for each
window, by properly specifying them in the parameter list. To deregister completely (e.g. every event class for
every window), an application uses NULL event class and window handle values in the parameter list.

Although the WFSDeregister takes effect immediately, itis possiblethat messages may be waiting in the
application's message queue. A robust application must therefore be prepared to receive event messages even after
deregistration.

35

CWA 16926-1:2015 (E)

Note that an event notification message always passes the information describing the event to an application by
pointing to a WFSRESULT data structure. A fter the application has used the datain the structure, it must free the
memory thatthe Service Provider allocated for the WFSRESULT data structure,using the WFSFreeResult
function. The hResult field of the WFESRESULT structureis not used unless the eventis a command completion
event or explicitly defined in this specification.

36

CWA 16926-1:2015 (E)

412 Application Processes, Threads and Blocking Functions

An application process contains one or more threads of execution. The XFS interface is designed to work in both
the single-threaded versions of the Windows operating systems (Windows 3.1 and Windows for Workgroups)and
in the multi-threaded versions of Windows (Windows NT and future versions of Windows). All references to
threads in this document refer to actual threads in multi-threaded Windows environments. In single-threaded
environments, “thread” is synonymous with “process.”

Within the XFS Manager, a blocking (synchronous) function is handled as follows: The XFS Manager initiates the
operation, and then enters a loop in which it dispatches any Windows messages (thus yielding the processorto other
applications as necessary)and checks for the completion of the operation. When the operation completes, or

WEFES CancelBlockingCall is invoked, the blocking operation completes with an appropriate result.

When a Windows message is received for a thread for which a blocking operation is in progress,the thread is not
permitted to issue any XFS calls during the processing of the message, other than the two specific functions
provided to assist the programmer in this situation:

e WESIsBlocking determines whether or nota blocking call is in progress.
e WEFSCancelBlockingCall cancels a blocking call in progress.

Any other XFS function called when a blocking call is in progress fails with the error
WEFS ERR OP IN PROGRESS. This restriction applies to requests for both blocking and non-blocking
operations.

Although this mechanism is sufficient for simple applications, it cannot support those applications which require
more complex message processing while blocked for a synchronous call, such as processing messages relating to
MDI (multiple document interface) events, accelerator key translations, and modeless dialogs. For such
applications, the XFS API includes the function WESSetBlockingHook, which allows the programmer to define a
special routine which will becalled instead of the default message dispatch routine described above. This function
gives an application the ability to execute its own routine at blocking time in place of the default routine. It is not
intended as a mechanism for performing general application functions while blocked; it is still true that the only
XFS functions that may be called from a blocking routine are WFSIsBlocking and WFS CancelBlockingCall. The
asynchronous versions ofthe XFS functions must be used to allow an application to continue processing while an
operation is in progress.

This mechanism is provided to allow a Windows 3.x or Windows for Workgroups application to make blocking
calls without blocking the rest of the system. Under Windows NT and future multi-threaded, preemptive versions of
Windows, the default blocking action is to suspend the calling application's thread until the request completes. This
is because the systemis not blocked by a single application waiting for an operation to complete, and hence not
calling PeekMessage or GetMessage, which are required in the non-preemptive systems in order to cause the
application to yield control.

Therefore, if a single-threaded application is targeted at both single- and multi-threaded environments, and relies on
this functionality, it should install a specific blocking hook by calling WFSSetBlockingHook, even if the default
hook would suffice. This maximizes the portability of applications that depend on the blocking hook behavior.
Programmers who are constrained to use blocking mode - for example, as part of an existing application which is
being ported - should be aware of the semantics of blocking operations.

In the XFS implementation in a single-threaded environment, the blocking function operates as follows. When an
application requests a blocking XFS API function, the XFS Manager initiates the requested function and then enters
a loop which is equivalent to the following pseudo-code:

for(;;) {
/* flush messages for good user response */
DefaultBlockingHook();
/* check for WFSCancelBlockingCall() */
if(operation_cancelled())
break;
/* check to see if operation completed */
if(operation_complete())
break; /* normal completion */

37

CWA 16926-1:2015 (E)

The DefaultBlockingHook routine is equivalentto:

BOOL DefaultBlockingHook (void) {

MSG msg;

BOOL ret;

/* Wait for the next message */

ret = GetMessage(&msg, NULL, 0, 0);

if((int) ret != -1) {
TranslateMessage(&msg);
DispatchMessage (&msg);

¥
/* FALSE if we got a WM _QUIT message */
return(ret);

In a multi-threaded environment, the developer of a multi-threaded application must be aware thatit is the
responsibility of the application, not the XFS Manager, to synchronize access to a service by multiple threads.
Failure to synchronize calls to a service leads to unpredictable results; for example, if two threads "simultaneously"
issue WFSExecute requests to send data to the same service, there is no guarantee as to the order in which the data
is sent. This is true in general; the application is responsible for coordinating access by multiple threads to any
object (e.g. other forms of I/O, such as file I/O), using appropriate synchronization mechanisms. The XFS Manager
can not, and will not, address these issues. The possible consequences of failing to observe these rules are beyond
the scope of this specification.

In order to allow maximum flexibility in thedesign and implementation of applications, especially in nulti-
threaded environments, the concept of "application identity" can optionally be managed explicitly by the
application developer using the concept of application handles. See Sections 4.5 and 4.8.2 for additional discussion
of'this concept.

38

CWA 16926-1:2015 (E)

413 Vendor Dependent Mode

XFS compliant applications must comply with the following:

e Every XFS application should open a session with the VDM Service Provider passingavalid Application
ID and then register for all VDM entry and exit notices.

e Before opening any session with any other XFS Service Provider, check the status ofthe VDM Service
Provider. If Vendor Dependent Mode is not “Inactive”, do not open a session.

e When getting a VDM entry notice, close all open sessions with all other XFS Service Providers as soon as
possible and issue an acknowledgement for the entry to VDM.

e When getting a VDM exit notice, acknowledge at once.
e When getting a VDM exited notice, re-open any required sessions with other XFS Service Providers.

This is mandatory for self-service but optional for branch.

39

CWA 16926-1:2015 (E)

4.14 Memory Management

XFS specifies a protocol for dynamic allocation and release of memory. The general strategy is that the Service
Providers allocate memory as they need it, and the applications specify when it can be released. This is
implemented using a standard structure (WFSRESULT, defined in Section 9.1) thatis always used to pass
information to the applications from the services.

Most Service Provider function calls are asynchronous,and return their results via a completion message, which
contains a pointer to a WFSRESULT structure, containing the function return status (2Result) and optional data.
The Service Provider allocates the memory for this structure, using the memory management framework described
below. The deallocation of the structure is done as follows:

e Asynchronous API functions
The application receives the structure from the Service Provider via a completion message, and is responsible
for deallocation.

e Synchronous WFSExecute, WESGetInfo and WESLock API functions
The XFS Manager passes through the WFSRESULT structure to the application as a returned parameter, and
the application is then responsible for deallocation, justas for asynchronous calls.

e All other synchronous APIfunctions
The XFS Manager unpacks the required information from the WFSRESULT structure into returned parameters
to the application, deallocates the structure,and returns to the application.

Four functions are provided by the XFS Manager to implement this protocol: WFMAllocateBuffer,
WFEMAllocate More, WFMFreeBuffer, and WFSFreeResult. Using these functions, two widely applicable
allocation policies are supported:

e A linear allocation policy
e A linked allocation policy

Linear allocation can be used for any flat or contiguously allocated data structure. Such structures are returned in a
single block of allocated memory by the WFMAllocateBuffer function.

Linked allocation canbe used as an efficient way of managing complex data structures, permitting the Service
Provider some flexibility while allowing the application to release the entire structure with a single call. In cases in
which the Service Provider does notknow a priori the size of the result data set, it makes an initial estimate, and
uses WFMAllocateBuffer. If the Service Provider later determines that more spaceis required by the data, new
memory is requested using the function WFMAllocate More, and is automatically linked to the originally allocated
block. The new memory block returned by WFMAllocate More is, in general, not contiguous with the root block,
and theuser of this function should behave in all circumstances as if it is not.

The Service Provider is free to choose whateverallocation granularity is most convenient. This is completely
transparent to the application or XFS Manager, which frees the entire WFSRESULT structure with a single
WESFreeResult call (the XFS Manager can also use this call as an indication thatit can clean up any other objects
associated with the request). Applications must be sure always to free a returned WFSRESULT structure. Note that
a WFSRESULT structure may be returned even if the Service Provider has returned an error; if no WFSRESULT is
returned, the pointer to the structureis NULL. A Service Provider may use also this facility for its "private"
memory management requirements; it then uses the WFEMFreeBuffer support function to free the allocated
memory.

NOTE:
Applications and Service Providers must use the facilities provided by the XFS Manager for XFS-

related memory allocation and deallocation, in order to avoid memory management conflicts among
the applications, the XFS Manager and the Service Providers.

40

CWA 16926-1:2015 (E)

The following example illustrates how a Service Provider dynamically allocates a WFSRESULT buffer structure
and an additional data buffer. Note that WFMAIllocate More automatically links these,allowing the application to
free both structures with a single call.

WFSRESULT * 1pResultBuffer;
// Service Provider allocates a WFSResult buffer structure

result = WFMAllocateBuffer(sizeof(WFSRESULT), ulMemFlags, &lpResultBuffer);

// Service Provider allocates additional memory

hr = WFMAllocateMore(evenMoreMemory, lpResultBuffer, &lpResultBuffer->1lpBuffer);

Once the application has retrieved all the information it needs from the WFSRESULT buffer and any associated
structures, it must free the memory, which requires only a single call:

// application deallocates the structure when it is finished with it

hr = WFSFreeResult(lpResultBuffer); // frees both the result buffer and
// any additional buffers

NOTE:

When an application invokes an asynchronous orimmediate (i.e. non-blocking) function which takes
a pointer to a memory object as an argument, it is the responsibility of the Service Provider to ensure
thatit no longer needs access to the object before returning control to the application. This allows the
application to release (deallocate) the memory object immediately upon the return from the call.

41

CWA 16926-1:2015 (E)

4.15 Command Synchronization

When the Service Provider supports command synchronization, the application can synchronize a command with
anotheraction (e.g. another command, screen change, etc.). For example, if both a receipt printer Service Provider
and a card reader Service Provider support command synchronization for media ejection, the application can call
synchronization preparation commands to both Service Providers and then the application can synchronize the
media ejections (a receipt and a card) by calling the actual eject commands at the same time. For sample flows of
command synchronization, see chapter 14.

42

CWA 16926-1:2015 (E)

4.16 Binary Interface

All applications and Service Providers should be fully compliant with the exported WFS and WFP interfaces in
order to be compliant with any vendor’s implementation ofthe XFS Manager. The CEN XFS SDK provides a
reference XFS Managerand matching LIB files which are compliant with the interface defined below.

The following table lists the XFS Manager’s API functions and their DLL locations, together with their fixed
ordinal values.

DLL and Ordinal Number
API Call MSXFS XFS_SUPP | XFS_CONF
WFMAIllocateBuffer 1 4
WFMAIllocateMore 2 5
WFMFreeBuffer 3 6
WFMGetTracelLevel 4
WFEMKillTimer 5 7
WFMOutputTraceData 7 9
WFMReleaseDLL 8
WFMSetTimer 9 10
WFMSetTracelLevel 10 11
WFSAsyncClose 11
WFSAsyncDeregister 12
WFSAsyncExecute 13
WFSAsyncGetinfo 14
WFSAsynclLock 15
WFSAsyncOpen 16
WFSAsyncRegister 17
WFSAsyncUnlock 18
WFSCancelAsyncRequest 19
WFSCancelBlockingCall 20
WFSCleanUp 21
WFSClose 22
WFSCreateAppHandle 23
WFSDeregister 24
WFSDestroyAppHandle 25
WFSExecute 26
WFSFreeResult 27
WFSGetInfo 28
WFSIsBlocking 30
WFSLock 31
WFSOpen 32
WFSRegister 33
WFSSetBlockingHook 34
WFSStartUp 35
WFSUnhookBlockingHook 36
WFSUnlock 37
WFMCloseKey 4
WFMCreateKey 5
WFMDeleteKey 6
WFMDeleteValue 7
WFMEnumKey 8
WFMEnumValue 9
WFMOpenKey 10
WFMQueryValue 11
WFMSetValue 12

43

CWA 16926-1:2015 (E)

5. Application Programminginterface (APIl) Functions

The functions defined by the XFS API are divided into:

® Basic functions thatare common to all classes of financial services.

o Administration functions, used for the special purpose of administering services.

o Service-specific commands that are peculiar to a single service class or a group of them and that are sent to
services using basic functions (WFSExecute, WFSAsyncExecute, WFSGetInfo, WFS AsyncGetInfo).

The benefit of grouping functions that are common to all services is evident: programmers can immediately focus
on those operations thatare common through all services and thus can easily build a high level model of interaction
with the Service Providers.

The basic functions are defined in this section, in alphabetical order, except that the asynchronous version ofeach
command is described immediately following the synchronous version. For example, WEFSAsyncExecute is placed
immediately following WEFSExecute. The table on the next pagelists all the basic functions. This set of basic
functions may be expanded in future releases of this specification, if new functions are determined to be useful for
all Service Providers.

The administration functions have notyet been fully defined; they are outlined in Appendix A. - Planned
Enhancements and Extensions.

The service-specific commands are defined in separate specifications-one for each service class. In addition, the
XFS SNMP MIB architecture specification defines a number of category codes that are common across all service
classes.

CWA 16926-1:2015 (E)

The table below summarizes the XFS API functions,and the sections in which they are defined.

Section | Function Mode Description

5.1 WFESCancelAsyncRequest Immediate Cancel an outstanding asynchronous request

5.2 WES CancelBlockingCall Immediate Cancel an outstanding blocking operation

53 WFESCleanUp Synchronous Terminate a connection between an application
and the XFS Manager

5.4 WFESClose Synchronous Close a session between an application and a
Service Provider

5.5 WESAsyncClose Asynchronous | The asynchronous version of WFSClose

5.6 WFSCreateAppHandle Immediate Create a new application handle to be usedin a
subsequent WFSOpen call

5.7 WEFSDeregister Synchronous Disable monitoring ofa class of events by an
application

5.8 WES AsyncDeregister Asynchronous | The asynchronous version of WESDeregister

5.9 WFSDestroyAppHandle Immediate Destroy the specified application handle

5.10 WFESExecute Synchronous Send service-specific commands to a Service
Provider

5.11 WES AsyncExecute Asynchronous | The asynchronous version of WFS Execute

5.12 WFESFreeResult Immediate Requestthe XFS Managerto free a result buffer

5.13 WES GetInfo Synchronous Retrieve service-specific information from a
Service Provider

5.14 WES AsyncGetlnfo Asynchronous [The asynchronous version of WFS GetInfo

5.15 WFSIsBlocking Immediate Determine if a blocking call is in progress

5.16 WES Lock Synchronous Establish exclusive control by an application of a
service

517 WES AsyncLock Asynchronous | The asynchronous version of WES Lock

5.18 WFEFSOpen Synchronous Open a session between an application and a
Service Provider

5.19 WES AsyncOpen Asynchronous | The asynchronous version of WES Open

5.20 WEFSRegister Synchronous Enable monitoring ofa class of events by an
application

5.21 WFS AsyncRegister Asynchronous [The asynchronous version of WFSRegister

5.22 WES SetBlocking Hook Immediate Install an application-specific blocking routine

5.23 WES StartUp Immediate Initiate a connection between an application and
the XFS Manager

5.24 WFEFS Unhook Blocking Hook Immediate Restore the default blocking routine

5.25 WES Unlock Synchronous Release exclusive control by an application ofa
service

5.26 WES AsyncUnlock Asynchronous | The asynchronous version of WEFS Unlock

45

CWA 16926-1:2015 (E)

5.1 WFSCancelAsyncRequest

HRESULT

WFSCancelAsyncRequest(hService, RequestID)

Cancels the specified (or every) asynchronous request being performed on the specified service, before its (their)

completion.

Parameters

Mode

Comments

Error Codes

See Also

46

HSERVICE hService
Handle to the service as returned by WFESOpen or WFS AsyncOpen.

REQUESTID Request/D
The request identifier for the requestto be canceled, as returned by the original function call
(NULL to cancel all).

Immediate

If the RequestID parameter is set to NULL, the command will cancel all asynchronous requests
thatare in progress using the specified 2Service.

A previously initiated asynchronousrequest is canceled prior to completion by issuing the
WFSCancelAsyncRequest function, specifying the request identifier returned by the
asynchronous function. This function is immediate with respecttoits calling application, but the
cancellation process is inherently asynchronous. On completion, the specified request (or all
requests)will have finished, with a completion message indicating a status of

WFS ERR CANCELED, unless the cancel request was received by the service after the request
had completed. Thus, WES CancelAsyncRequest is not guaranteed to stop all asynchronous
commands: normal completion messages may still be posted after the cancel. A robust application
that uses asynchronous commands should be designed to accept these messages even after a
cancel is issued.

The cancellation applies not only to the XFS Managerlevel, butalso to the Service Provider
level. The requestis passed through the SPI, and the Service Provider normally then also cancels
any physical /O or other device operation in progress, in the appropriate manner for the device or
service.

If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR _CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_REQ_ID

The RequestID parameter does not correspond to an outstanding request on the service.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR _OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFS CancelBlockingCall and
WESIsBlocking are permitted at this time.

WES AsyncExecute

CWA 16926-1:2015 (E)

5.2 WFSCancelBlockingCall

HRESULT

WFSCancelBlockingCall(dwThreadID)

Cancels a blocking operation for the specified thread, if one is in progress.

Parameters

Mode

Comments

Error Codes

See Also

DWORD dwThreadID
Identifies the thread for which the blocking operation is to be canceled; a NULL value indicates
the calling thread.

Immediate

This function is used to cancel a blocking call (synchronous request)thatis in progress. Since a
thread may have only one blocking call in progress at any time, WEFSIsBlocking and

WFS CancelBlockingCall are the only XFS functions allowed with respectto a thread when it
has a blocking call in progress.

The application thatissued the blocking call receives a WFS_ERR_CANCELED return code if
the operation is successfully canceled.

The cancellation applies notonly to the XFS Managerlevel, butalso to the Service Provider
level. The requestis passed through the SPI, and the Service Provider normally then also cancels
any physicall/O or other device operation in progress,in the appropriate manner for the device or
service.

Note: the cancel requestis accepted and is honored as soon as all Windows messages have been
removed from the message queue (i.e. GetMessage returns no more messages). Refer to
WFESSetBlockingHook for more information.

If the function return is not WFS_SUCCESS, it is the following error condition:

WFS_ERR CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR _NO_BLOCKING_CALL
There is no outstanding blocking call for the specified thread.

WFS_ERR_NO_SUCH_THREAD
The specified thread does not exist.

WFS_ERR _NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFESSetBlockingHook, WFSIsBlocking, WFS CancelAsyncRequest

47

CWA 16926-1:2015 (E)

5.3 WFSCleanUp

HRESULT WFSCleanUp()

Disconnects an application from the XFS Manager.

Parameters None
Mode Synchronous
Comments The WFSCleanUp call indicates disconnection of an XFS application from the XFS Manager.

This function, for example, frees resources allocated to the specific application. WFS CleanUp
applies to all threads of a multi-threaded application. If WFSClose has not been issued for one or
more Service Providers, then the XFS Managerwill automatically issue the close(s). Once the
WFSCleanUp has been performed, subsequent attempts to issue any XFS function otherthan
WESStartUp will fail.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR _NOT_STARTED
The application has not previously performed a successful WESStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFS CancelBlockingCall and
WESIsBlocking are permitted at this time.

See Also WESStartUp

48

CWA 16926-1:2015 (E)

5.4 WFSClose

HRESULT WFSClose(hService)

Terminates a session (aseries of service requests initiated with the WFSOpen or WESAsyncOpen function)
between the application and the specified service. The synchronous version of WFSAsyncClose.

Parameters HSERVICE hService
The service handle returned by WFSOpen or WFSAsyncOpen. Matches the close request to
the open request, allowing an application to have multiple sessions open simultaneously with a
single Service Provider.

Mode Synchronous

Comments WFSClose directs the service to free all resources associated with the series of requests made
using the hAService parameter since the WFSOpen that returned it. If there is a blocking call in
progress the close fails. If the service is locked, the close automatically unlocks it. If no
WESDeregister has been issued, it is automatically performed.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions. Any
service-specific errors that can be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelBlockingCall.

WFS_ERR _CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE

The hService parameter is not a valid service handle.

WFS_ERR _NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR _OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFS CancelBlockingCall and
WESIsBlocking are permitted at this time.

See Also WEFSAsyncClose, WFESOpen, WEFSDeregister

49

CWA 16926-1:2015 (E)

5.5 WFSAsyncClose

HRESULT

WFSAsyncClose(hService, hWnd, IpRequestID)

Terminates a session (aseries of service requests initiated with the WFSOpen or WESAsyncOpen function)
between the application and the specified service. The asynchronous version of WFSClose.

Parameters

Mode

Comments

Messages

Error Codes

See Also

50

HSERVICE hService
The service handle returned by WFSOpen or WFSAsyncOpen. Matches the close request to
the open request, allowing an application to maintain several "open sessions" simultaneously.

HWND hWnd
The window handle which is to receive the completion message for this request.

LPREQUESTID /pRequestID
Pointer to the request identifier for this request (returned parameter).

Asynchronous

See WEFSClose.

The application must call WFSFreeResult to deallocate the WFSRESULT data structure which
is pointed to by the completion message. Note thata WFSRESULT structure may be returned
even if the function completes with an error; see Section 4.14.

WFS_CLOSE_COMPLETE

If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR _NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

The following error condition can be returned via the asynchronous command completion
message, as the AResult from the WFSRESULT structure.

WFS_ERR_CANCELED
The request was canceled by WFS Cancel AsyncRequest.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WESOpen, WFSDeregister

CWA 16926-1:2015 (E)

5.6 WFSCreateAppHandle

HRESULT

WFSCreateAppHandle(/phApp)

Requests a new, unique application handle value.

Parameters

Mode

Comments

Error Codes

See Also

LPHAPP IphApp
A pointer to the application handle to be created (returned parameter).

Immediate

This function is used by an application to requesta unique (within a single system) application
handle from the XFS Manager(to be used in subsequent WFSOpen/WFS AsyncOpen calls).
Note that an application may call this function multiple times in order to create multiple
“application identities” for itself with respect to the XFS subsystem. See Sections 4.5 and 4.8.2
for additional discussion.

If the function return is not WFS_SUCCESS, it is the following error condition.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WESStartUp.

WFSDestroyAppHandle, WEFSOpen, WFSAsyncOpen

51

CWA 16926-1:2015 (E)

5.7 WFSDeregister

HRESULT

WFSDeregister(hService, dwEventClass, hWndReg)

Discontinues monitoring of the specified message class(es) (or all classes) from the specified 2Service, by the
specified A WndReg (or all the calling application's #Wnd's). The synchronous version of WFES AsyncDeregister.

Parameters

Mode

Comments

Error Codes

See Also

52

HSERVICE hService
Service handle returned by WFSOpen or WES AsyncOpen. If this value is NULL, and
dwEventClassis SYSTEM_EVENTS, the XFS manager deregisters the application for those
systemevents generated by the Manager itself.

DWORD dwEventClass
The class(es) of messages from which the application is deregistering. Specified as a bit mask
that can be a logical OR of'the values for multiple classes. A NULL value requests that all
message classes be deregistered from the specified window for this AService.

HWND hWndReg
The window which has been previously registered to receive notification messages, and is now
to be deregistered. A NULL value requests that all the application's windows be deregistered
from the specified message class(es) for this AService.

Synchronous

The functions of a WFSDeregister request are performed automatically if a WFSClose is issued
without a previous WFSDeregister.

See section4.11 for a description of the classes of events that may be monitored.

If the function return is not WFS_SUCCESS, it is one ofthe following error conditions:

WFS_ERR_CANCELED
The request was canceled by WES CancelBlockingCall.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_EVENT_CLASS
The dwEventClass parameter specifies one or more event classes not supported by the service.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWNDREG
The hWndReg parameter is not a valid window handle.

WFS_ERR_NOT_REGISTERED
The specified AWndReg window was not registered to receive messages for any event classes.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR _OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFS CancelBlockingCall and
WESIsBlocking are permitted at this time.

WESRegister, WFSClose

CWA 16926-1:2015 (E)

5.8 WFSAsyncDeregister

HRESULT

WFSAsyncDeregister(hService, dwEventClass, hWndReg, hWnd, IpRequestID)

Discontinues monitoring of the specified message class(es) (or all classes) from the specified 2Service, by the
specified A WndReg (or all the calling application's hWnd's). The asynchronous version of WFSDeregister.

Parameters

Mode

Comments

Messages

Error Codes

HSERVICE hService
Service handle returned by WFSOpen or WES AsyncOpen. If this value is NULL, and
dwEventClassis SYSTEM_EVENTS, the XFS manager deregisters the application for those
systemevents generated by the Manager itself.

DWORD dwEventClass
The class(es) of events from which the application is deregistering. Specified as a bit mask that
can be a logical OR ofthe values for multiple classes. A NULL value requests that all event
classes be deregistered from the specified window for this AService.

HWND hWndReg

The window which has been previously registered to receive notification messages, and is now
to be deregistered. A NULL value requests that all the application's windows be deregistered

from the specified message class(es) for this AService.

HWND hWnd
The window handle which is to receive the completion message for this request.

LPREQUESTID /pRequestID
Pointer to the request identifier for this request (returned parameter).

Asynchronous

See WEFSDeregister.

The application must call WFSFreeResult to deallocate the WFSRESULT data structure which
is pointed to by the completion message. Note thata WFSRESULT structure may be returned
even if the function completes with an error; see Section 4.14.

WFS_DEREGISTER_COMPLETE

If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated:

WFS_ERR_CONNECTION _LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_EVENT_CLASS
The dwEventClass parameter specifies one or more event classes not supported by the service.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_HWNDREG
The hWndReg parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_REGISTERED
The specified hWndReg window was not registered to receive messages for any event classes.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

53

CWA 16926-1:2015 (E)

WFS_ERR _OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFS CancelBlockingCall and
WESIsBlocking are permitted at this time.

The following error conditions are returned via the asynchronous command completion message,
as the hResult from the WFSRESULT structure. Any service-specific errors that can be returned
are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFS CancelAsyncRequest.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

See Also WFEFSRegister, WFSClose

54

CWA 16926-1:2015 (E)

5.9 WFSDestroyAppHandle

HRESULT

WFSDestroyAppHandle(hApp)

Makes the specified application handle invalid.

Parameters

Mode

Comments

Error Codes

See Also

HAPP hApp
The application handle to be made invalid.

Immediate

This function is used by an application to indicate to the XFS Manager that it will no longer use
the specified application handle (from a previous WFSCreateAppHandle call). See
WFSCreateAppHandle and Sections 4.5 and 4.8.2 for additional discussion.

If the function return is not WFS_SUCCESS, it is one of the following error conditions.
WFS_ERR_INTERNAL_ERROR

An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR _NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_INVALID_APP_HANDLE
The specified application handle is not valid, i.e. was notcreated by a preceding create call.

WESCreateAppHandle

55

CWA 16926-1:2015 (E)

5.10 WFSEXxecute

HRESULT

WFSExecute (hService, dwCommand, IpCmdData, dwTimeOut, IppResult)

Sends a service-specific command to a Service Provider. The synchronous version of WFS AsyncExecute.

Parameters

Mode

Comments

Error Codes

56

HSERVICE hService
Handle to the service as returned by WFESOpen or WFS AsyncOpen.

DWORD dwCommand
Command to be executed by the Service Provider.

LPVOID IpCmdData
Pointer to a command data structure to be passedto the Service Provider.

DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE WAIT to specify a
request that will wait until completion).

LPWFSRESULT * IppResult
Pointer to the pointer to the result data structure used to return the results of the execution. The
Service Provider allocates the memory for this structure.

Synchronous

This function is used to execute service-specific commands. Each class of service includes a
unique set of commands for the given class of device or service; they are defined in the service-
specific command specifications. Each Service Provider developer is responsible for recognizing
the complete set of commands for a given class, even if the Service Provider doesn't support them
all. Each command, for each service class, defines a command data structure and/or a result data
structure. See the separate specifications for each service class for more discussion ofthese
issues, and the definitions of the service-specific commands and associated data structures.

The application must call WFSFreeResult to deallocate the WFSRESULT data structure
returned by this function. Note that a WFSRESULT structure may bereturned even if the
function completes with an error; see Section 4.14.

If the function return is not WFS_SUCCESS, it is one of the following error conditions. Any
service-specific errors that can be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelBlockingCall.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR _DEV_NOT_READY
The function required device access,and the device was notready or timed out.

WFS_ERR_HARDWARE_ERROR
The function required device access, and an error occurred on the device.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_COMMAND
The dwCommand issued is not supported by this service class.

WFS_ERR_INVALID_DATA
The data structure passed as input parameter contains invalid data.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR _LOCKED
The service is locked under a different AService.

See Also

CWA 16926-1:2015 (E)

WFS_ERR _NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFS CancelBlockingCall and
WESIsBlocking are permitted at this time.

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occurred on the
software.

WFS_ERR_TIMEOUT
The timeout interval expired.

WFS_ERR_UNSUPP_COMMAND
The dwCommand issued, although valid for this service class, is not supported by this Service
Provider or device.

WFS_ERR_USER_ERROR
A user is preventing proper operation of the device.

WFS_ERR_UNSUPP_DATA
The data structure passed as an input parameter although valid for this service class, is not
supported by this Service Provider or device.

WFS_ERR _FRAUD_ATTEMPT
Some devices are capable of identifying a malicious physicalattack which attempts to defraud
valuable information or media. In these cases,this error code is returned to indicate the useris
attempting a fraudulent act on the device.

WFS_ERR_SEQUENCE_ERROR

The requested operation is not valid at this time or in the devices current state.

WFS_ERR_AUTH_REQUIRED
The requested operation cannot be performed because it requires authentication.

WES AsyncExecute

57

CWA 16926-1:2015 (E)

5.11 WFSAsyncExecute

HRESULT

WFSAsyncExecute(hService, dwCommand, IpCmdData, dwTimeOut, hWnd,
IpRequestID)

Sends a service-specific command to a Service Provider. The asynchronous version of WFSExecute.

Parameters

Mode

Comments

Messages

Error Codes

58

HSERVICE hService
Handle to the Service Provider as returned by WFSOpen or WFS AsyncOpen.

DWORD dwCommand
Command to be executed by the Service Provider.

LPVOID IpCmdData
Pointer to the data structure to be passed to the Service Provider.

DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE WAIT to specify a
request that will wait until completion).

HWND hWnd
The window handle which is to receive the completion message for this request.

LPREQUESTID IpRequestiD
Pointer to the request identifier for this request (returned parameter).

Asynchronous

See WFSExecute.

The application must call WFSFreeResult to deallocate the WFSRESULT data structure which
is pointed to by the completion message. Note thata WFSRESULT structure may be returned
even if the function completes with an error; see Section 4.14.

WFS_EXECUTE_COMPLETE
WFS_EXECUTE_EVENT

If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated:

WFS _ERR CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_COMMAND
The dwCommand issued is not supported by this service class.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WESStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WESIsBlocking are permitted at this time.

WFS_ERR_UNSUPP_COMMAND
The dwCommand issued, although valid for this service class, is not supported by this Service
Provider or device.

See Also

CWA 16926-1:2015 (E)

The following error conditions are returned via the asynchronous command completion message,
as the AResult from the WFSRESULT structure. Any service-specific errors that can be returned
are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_DEV_NOT_READY
The function required device access, and the device was notready or timed out.

WFS_ERR_HARDWARE_ERROR
The function required device access, and an error occurred on the device.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_DATA
The data structure passed as input parameter contains invalid data.

WFS_ERR _LOCKED
The service is locked under a different AService.

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occurred on the
software.

WFS_ERR_TIMEOUT
The timeout interval expired.

WFS_ERR_UNSUPP_COMMAND
The dwCommand issued, although valid for this service class, is not supported by this Service
Provider or device.

WFS_ERR _USER_ERROR
A user is preventing proper operation of the device.

WFS_ERR_UNSUPP_DATA

The data structure passed as an input parameter although valid for this service class, is not
supported by this Service Provider or device.

WFS_ERR _FRAUD ATTEMPT
Some devices are capable of identifying a malicious physicalattack which attempts to defraud
valuable information or media. In these cases, this error code is returned to indicate the useris
attempting a fraudulent act on the device.

WFS_ERR_SEQUENCE_ERROR
The requested operation is not valid at this time or in the devices current state.

WFS_ERR_AUTH_REQUIRED

The requested operation cannot be performed because it requires authentication.

WESCancelAsyncRequest, WFSExecute

59

CWA 16926-1:2015 (E)

5.12 WFSFreeResult

HRESULT

WFSFreeResult (IpResult)

Notifies the XFS Managerthat a memory buffer (or linked list of buffers) that was dynamically allocated by a
Service Provider is to be freed.

Parameters

Mode

Comments

Error Codes

See Also

60

LPWFSRESULT IpResult
Pointer to a WFSRESULT data structure.

Immediate

The XFS Service Providers may allocate memory to send data to an application. This function is
used by the application to deallocate the memory, and the application must call it when it no
longer needs access to the memory. When the applications calls WESFreeResult, all memory
allocated by the Service Provider for this result is deallocated. See Section 4.14.

If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_RESULT
The IpResult parameter is nota pointer to an allocated WFSRESULT structure.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFEFSExecute, WFSAsyncExecute, WFSGetlnfo, WFSAsyncGetInfo

CWA 16926-1:2015 (E)

5.13 WFSGetinfo

HRESULT

WFSGetlInfo(hService, dwCategory, IpQueryDetails, dwTimeOut, IppResult)

Retrieves information from the specified Service Provider. The synchronous version of WES AsyncGetlnfo.

Parameters

Mode

Comments

Error Codes

HSERVICE hService
Handle to the Service Provider as returned by WESOpen or WEFS AsyncOpen.

DWORD dwCategory
Specifies the category of the query (e.g. for a printer, WFS_INF _PTR STATUS to request
status or WFS_INF_PTR CAPABILITIES torequestcapabilities). The available categories
depend on the service class, the Service Provider and the service. The information requested
can be either static or dynamic, e.g. basic service capabilities (static) or current service status
(dynamic).

LPVOID IpQueryDetails
Pointer to the data structure to be passed to the Service Provider, containing further details to
make the query more precise, e.g. a form name. Many queries have no input parameters, in
which case this pointer is NULL.

DWORD dwTimeOQOut

Number of milliseconds to wait for completion (WFS_INDEFINITE WAIT to specify a
request that will wait until completion).

LPWFSRESULT * IppResult
Pointer to the pointer to the data structure to be filled with the result of the execution. The
Service Provider allocates the memory for the structure.

Synchronous

The XFS Manager passes the request to the Service Provider, and since the information may be
stored remotely, the function cannot be immediate. Note that many requests can be satisfied by

the Service Provider and will therefore complete immediately.

The definitions of the dwCategory and IpQueryDetails parameters are provided in the service-
specific command sections of this specification. Note that these information retrieval functions
are separate from the otherservice-specific commands, since those commands can be executed
only via WFSExecute or WFSAsyncExecute, which require that the service be either locked by
the application issuing the command, or unlocked. The GetInfo functions,however, can be used
even when a service is locked by anotherapplication.

The application must call WFSFreeResult to deallocate the WFSRESULT data structure which
is returned by this function. Note thata WFSRESULT structure may be returned even if the
function completes with an error; see Section 4.14.

If the function return is not WFS_SUCCESS, it is one of the following error conditions. Any
service-specific errors that can be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WES CancelBlockingCall.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_DEV_NOT_READY
The function required device access, and the device was notready or timed out.

WFS_ERR_HARDWARE_ERROR
The function required device access,and an error occurred on the device.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_CATEGORY
The dwCategoryissued is not supported by this service class.

61

CWA 16926-1:2015 (E)

See Also

62

WFS_ERR_INVALID_DATA
The data structure passed as input parameter contains invalid data.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR _OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WESIsBlocking are permitted at this time.

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occurred on the
software.

WFS_ERR _TIMEOUT
The timeout interval expired.

WFS_ERR_UNSUPP_CATEGORY
The dwCategoryissued, although valid for this service class, is not supported by this Service
Provider.

WFS_ERR_USER_ERROR
A user is preventing proper operation of the device.

WFS_ERR _UNSUPP_DATA
The data structure passed as an input parameter although valid for this service class, is not
supported by this Service Provider or device.

WES AsyncGetInfo

CWA 16926-1:2015 (E)

5.14 WFSAsyncGetinfo

HRESULT

WFSAsyncGetInfo(hService, dwCategory, IpQueryDetails, dwTimeOut, hWnd,
IpRequestID)

Retrieves information from the specified Service Provider. The asynchronous version of WES GetlInfo.

Parameters

Mode

Comments

Messages

Error Codes

HSERVICE hService
Handle to the Service Provider as returned by WFSOpen or WEFS AsyncOpen.

DWORD dwCategory
See WES GetlInfo.

LPVOID IpQueryDetails
See WES Getlnfo.

DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE WAIT to specify a
request that will wait until completion).

HWND hWnd
The window handle which is to receive the completion message for this request.

LPREQUESTID IpRequestID
The request identifier for this request (returned parameter).

Asynchronous

See WES Getlnfo.

The only difference in the asynchronous version ofthe function is that the results (query details)
returned to the application (in the WFSRESULT data structure) are pointed to by the
WFS_GETINFO_COMPLETE message sentto the specified 4 Wnd.

The application must call WFSFreeResult to deallocate the WFSRESULT data structure which
is pointed to by the completion message. Note thata WFSRESULT structure may be returned
even if the function completes with an error; see Section 4.14.

WEFS_GETINFO_COMPLETE

If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated:

WFS_ERR_CONNECTION _LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_CATEGORY
The dwCategoryissued is not supported by this service class.

WFS_ERR _INVALID_HSERVICE

The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

63

CWA 16926-1:2015 (E)

See Also

64

WFS_ERR_UNSUPP_CATEGORY
The dwCategory issued,although valid for this service class, is not supported by this Service
Provider.

The following error conditions are returned via the asynchronous command completion message,
as the hResult from the WFSRESULT structure. Any service-specific errors that can be returned
are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR _DEV_NOT_READY
The function required device access,and the device was notready or timed out.

WFS_ERR_HARDWARE_ERROR
The function required device access,and an error occurred on the device.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_DATA
The data structure passed as input parameter contains invalid data.

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occurred on the
software.

WFS_ERR_TIMEOUT
The timeout interval expired.

WFS_ERR _USER_ERROR
A user is preventing proper operation of the device.

WFS_ERR _UNSUPP_DATA
The data structure passed as an input parameter although valid for this service class, is not
supported by this Service Provider or device.

WEFS Getlnfo, WEFSCancelAsyncRequest

CWA 16926-1:2015 (E)

5.15 WFSiIsBlocking

BOOL

WFSisBlocking()

Determines whether a thread has a blocking operation in progress.

Parameters

Return Value

Mode

Comments

See Also

None
The return value is TRUE if a blocking operationis in progress and FALSE otherwise.
Immediate

Although a call issued on a synchronous (blocking) function appears to an application as though it
blocks, the XFS Manager in fact relinquishes control of the processorto allow other Windows
processes torun. Thus it is possible for an application thatissues a blocking call to be re-entered,
depending on the messages it receives. Since the XFS Manager prohibits more than one
outstanding blocking call per thread, an application's message processing routines need a way to
determine whether they have been re-entered while the application is waiting for an outstanding
blocking call to complete. The WFSIsBlocking function provides this function, allowing an
application to detect whether a blocking operation is already in progress,before it issues another
XFS request.

Note that if another XFS call is issued in this situation, the XFS Manager returns with a
WEFS _ERR OP_IN PROGRESS error code. See Section 4.12 for additional discussion.

WES CancelBlockingCall

65

CWA 16926-1:2015 (E)

5.16 WFSLock

HRESULT WFSLock(hService, dwTimeOut, IppResult)

Establishes exclusive control by the calling application over the specified service. The synchronous version of
WEFS AsyncLock.

Parameters HSERVICE hService
Service Provider handle as returned by WFESOpen or WFS AsyncOpen.

DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE WAIT to specify a
request that will wait until completion).

LPWFSRESULT */ppResult
Pointer to the pointer to a WFSRESULT data structure (see Comments). The Service Provider
allocates the memory for this structure.

Mode Synchronous

Comments A Service Provider can supporta "shared" session, in which multiple applications' data are mixed
in the service's I/O stream. More typically, a session is exclusive at any pointin time; all I/O is
for a single application. To define an exclusive use of the Service Provider, a lock function
(synchronous orasynchronous) must be used. See Section 4.8 for more discussion ofthe lock
concepts and policy.

The time to complete will depend on whether there is another application that has acquired
exclusive access to the service. Note that trying to lock several services at the same time can lead
to a deadlock. The timeout capability is provided in the API to allow applications to prevent this.

IppResultis a pointer to a pointer to a WFSRESULT data structure containing a null-terminated
array of service handles (hService values), specifying any other services that are already locked
by the application (i.e. under the same hApp), only if those services are part of a compound
device thatincludes the service being locked, and are interdependent with it. The returned pointer

is NULL if there are no such "associated" services locked. See Section 4.8.2 for more discussion
of this subject.

The application must call WFSFreeResult to deallocate the WFSRESULT data structure, if there

is one. Note that a WFSRESULT structure may be returned even if the function completes with
an error; see Section 4.14.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CANCELED
The request was canceled by WES CancelBlockingCall.

WFS_ERR _CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR _OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WESIsBlocking are permitted at this time.

WFS_ERR_TIMEOUT
The timeout interval expired.

66

CWA 16926-1:2015 (E)

See Also WFSAsyncLock, WESUnlock, WFS CancelBlockingCall

67

CWA 16926-1:2015 (E)

5.17 WFSAsyncLock

HRESULT

WFSAsyncLock(hService, dwTimeOut, hWnd, IpRequestID)

Establishes exclusive control by the calling application over the specified service. The asynchronous version of

WFSLock.

Parameters

Mode

Comments

Messages

Error Codes

68

HSERVICE hService
Handle to the Service Provider as returned by WFSOpen or WFS AsyncOpen.

DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE WAIT to specify a
request that will wait until completion).

HWND hWnd
The window handle which is to receive the completion message for this request.

LPREQUESTID IpRequestID
Pointer to the request identifier for this request (returned parameter).

Asynchronous

See WEFSLock and Section 4.8.2. In particular, note that if other services are locked as a result of
this call (i.e. becausetheservice specified is part of a compound device), the handles of these
services are returned in the WFSRESULT data structure pointed to by the completion message.

The application must call WFSFreeResult to deallocate the WFSRESULT data structure. Note
thata WFSRESULT structure may be returned even if the function completes with an error; see
Section 4.14.

WFS_LOCK_COMPLETE

If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated:

WFS_ERR _CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR _OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WESIsBlocking are permitted at this time.

The following error conditions are returned via the asynchronous command completion message,
as the hResult from the WFSRESULT structure.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_TIMEOUT
The timeout interval expired.

CWA 16926-1:2015 (E)

See Also WEFSLock, WFSUnlock, WFSCancelAsyncRequest

69

CWA 16926-1:2015 (E)

5.18 WFSOpen

HRESULT WFSOpen(IpszLogicalName, hApp, IpszApplD, dwTracelLevel, dwTimeOut,
dwSrvcVersionsRequired, IpSrvcVersion, IpSPIVersion, IphService)

Initiates a session (aseries of service requests terminated with the WESClose function) between the application and
the specified service. This does notnecessarily mean that the hardware is opened. This command will return with
WEFS SUCCESS even if the hardware is inoperable, offline or powered off. The status ofthe device can be
requested through a WFSGetInfo command.

The synchronous version of WFS AsyncOpen.

Parameters LPSTR IpszLogicalName
Points to a null-terminated string containing the pre-defined logical name ofa service. It is a
high level name such as "SYSJOURNALI1", "PASSBOOKPTR3" or "CASHDISP02," thatis
used by the XFS Manager and the Service Provider solely as a key to obtain the specific
configuration information they need.

HAPP hApp
The application handle to be associated with the session being opened. If this parameter is
equalto WFS_DEFAULT HAPP, the sessionis associated with the calling process as a whole
(i.e. the calling process,notsome subset ofits threads,is the owner of the session and its
hService). See WESCreateAppHandle and Sections 4.5 and 4.8.2 for details.

LPSTR IpszApplD
Points to a null-terminated string containing the application ID; the pointer may be NULL if the
ID is notused. This ID may be used by services in a variety of ways; e.g. it is included in the
SYSTEM_EVENT message for undeliverable events,to aid in finding system problems

DWORD dwTracelevel
See WFMSetTraceLevel. NULL turns off all tracing.

DWORD dwTimeOQOut
Number of milliseconds to wait for completion (WFS_INDEFINITE WAIT to specify a
request that will wait until completion).

DWORD dwSrvcVersionsRequired
Specifies the range of versions of the service-specific interface thatthe application can support.
(See Comments.) The low-order word indicates the highest version of the interface the
application can support; the high-order word indicates the lowest version of the interface the
application can support.In each word, the low-order byte specifies the major version number
and the high-order byte specifies the minor version number (i.e. the numbers before and after
the decimal).
Note: in order to allow intermediate minor revisions (e.g. between 1.10 and 1.20), the minor
version number should always be expressed as two decimal digits, i.e. 1.10, 1.11, 1.20, etc.

LPWFSVERSION [/pSrvcVersion

Pointer to the data structure that is to receive version support information and other details
about the service-specific interface implementation (returned parameter).

LPWFSVERSION [pSPIVersion
Pointer to the data structure that is to receive version support information and (optionally) other
details about the SPI implementation of the Service Provider being opened (returned
parameter). This pointer may be NULL if the application is notinterested in receiving this
information. See WFPOpen.

LPHSERVICE IphService
Pointer to the service handle that the XFS Manager assigns to the service on a successfulopen;
the application uses this handle for communication with the Service Provider for the remainder
of'the session (returned parameter). If a process opens the same service twice, the XFS
Manager generates and returns different AService values.

Mode Synchronous

70

Comments

Error Codes

CWA 16926-1:2015 (E)

This function is used by an application to initiate a session with a service; the session is
terminated by WEFSClose. After WESStartUp, an application must use this function (or the
asynchronous version)to access aservice. The requestis made in terms of a logical service name
(IpLogicalName) which is mapped by the XFS Manager to a Service Provider. The XFS Manager
loads the Service Provider, if necessary,and returns a logical service handle to the application
which is used during the session to refer to the service.

In order to support future XFS implementations with maximum flexibility, two version
negotiations take place in WFSOpen processing. An application specifies in the
dwSrvcVersionsRequired parameter the range of versions of the service-specific interface (as
defined by the events and error codes within this specification and in the separate XFS
specifications for specific classes of devices, such as banking printers and cash dispensers)that it
can support. If the range of versions specified by the application overlaps the range of versions
that the Service Provider’s implementation can support,the call succeeds. Otherwise the call fails.
(The othernegotiation that takes place during the open process is between the XFS Manager and
the Service Provider regarding the SPI level. See WFPOpen for details.)

Information describing the actual Service Provider implementation is returned in the
WPFSVERSION data structure (defined in Section 9.2). In particular, it returns the version the
Service Provider expects the application to use (the highest common version), as well as the
lowest and highest versions it is capable of. If the call fails, WFSVERSION is still returned, to
help with analysis of the failure.

The version numbers refer to the complete interface specification: the service-specific
WFSExecute and WFSGetInfo commands, parameters, data structures, error codes, and
messages. If there are any changes to these, the version number should be changed.

This version negotiation allows an XFS application and a Service Provider to operate successfully
if there is any overlap in their versions. The following chart gives examples of how WFSOpen
works in conjunction with different application and Service Provider versions:

dwSrvcVersions- IpSrvcVersion.wLowVerion Return status from W FSOpen: IpSrvcVersion
Required (Version IpSrvcVersion.wHigh Version .wVersion
required by (Service Provider versions): (Result):
Application):

0x00010001 0x0001 0x0001 WFS_SUCCESS 0x0001
(1.00) (1.00) (use 1.00)
0x00010A02 0x0001 0x0001 WFS_SUCCESS 0x0001
(1.00 - 2.10) (1.00) (use 1.00)
0x0B010B0O1 0x0001 0x0002 WFS_SUCCESS 0x0B01
(1.11) (1.00 - 2.00) (use 1.11)
0x0B020003 0x0001 0x1402 WEFS SUCCESS 0x1402
(2.11 - 3.00) (1.00 - 2.20) (use 2.20)
0x00010001 0x14020x0003 WFS_ERR_SRVC_VERS TOO_LOW | 0x0000
(1.00) (2.20 - 3.00) (fails)
0x0B010003 0x0001 0x0001 WFS_ERR_SRVC_VERS TOO_HIGH | 0x0000
(1.11 - 3.00) (1.00) (fails)

Note that a version negotiation error also generates a systemevent (see Section 10.8).

If a valid Service Provider is available, the Open command will not complete until the Service
Provider and all its dependencies are running. That is, if an out of process executable is required
by this Service Provider, this executable should be running and fully initialized before completion
ofthe Open command. The starting and stopping ofexternal dependent processesis not defined
as the responsibility of the Service Provider, butthe latter has to be aware of and respond
correctly to the Open command according to external dependent process state. In addition, if the
specified timeout period expires before dependent external processes have correctly initialized,

the Service Provider must complete and return WFS_ERR TIMEOUT as expected.

If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CANCELED
The request was canceled by WES CancelBlockingCall.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

71

CWA 16926-1:2015 (E)

See Also

72

WFS_ERR_INVALID_APP_HANDLE
The specified application handle is not valid, i.e. was notcreated by a preceding create call.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_INVALID_SERVPROV
The file containing the Service Provider is invalid or corrupted.

WFS_ERR_INVALID_TRACELEVEL
The dwTraceLevel parameter does not correspond to a valid trace level or set of levels.

WFS_ERR _NO_SERVPROV
The file containing the Service Provider does not exist.

WFS_ERR _NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFS CancelBlockingCall and
WFESIsBlocking are permitted at this time.

WFS_ERR_SERVICE_NOT_FOUND
The logical name is not a valid Service Provider name.

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occurred on the
software.

WFS_ERR_SPI_VER_TOO_HIGH
The range of versions of XFS SPI supportrequested by the XFS Manager is higher than any
supported by the Service Provider for the logical service being opened.

WFS_ERR_SPI_VER_TOO_LOW
The range of versions of XFS SPI supportrequested by the XFS Manager is lower than any
supported by the Service Provider for the logical service being opened.

WFS_ERR_SRVC_VER TOO_HIGH
The range of versions of the service-specific interface support requested by the application (in
the dwSrvcVersionsRequired parameter of this call) is higher than any supported by the Service
Provider for the logical service being opened.

WFS_ERR_SRVC_VER TOO_LOW
The range of versions of the service-specific interface supportrequested by the application (in
the dwSrvcVersionsRequired parameter of this call) is lower than any supported by the Service
Provider for the logical service being opened.

WFS_ERR_TIMEOUT
The timeout interval expired.

WFS_ERR _VERSION_ERROR_IN_SRVC
Within the service, a version mismatch oftwo modules occurred.

WESAsyncOpen, WEFSClose, WEFSCreateAppHandle

CWA 16926-1:2015 (E)

5.19 WFSAsyncOpen

HRESULT WFSAsyncOpen(IpszLogicalName, hApp, IpszAppID, dwTracelLevel, dwTimeOQut,
IphService, hWnd, dwSrvcVersionsRequired, IpSrvcVersion,
IpSPIVersion, IpRequestID)

Initiates a session (aseries of service requests terminated with the WFSClose or WFESAsyncClose function)
between the application and the specified service. This does not necessarily mean that the hardware is opened. This
command will return with WFS_SUCCESS even if the hardware is inoperable, offline or powered off. The status of
the device can be requested through a WFSGetInfo command.

The asynchronous version of WFS Open.

Parameters LPSTR IpszLogicalName
See WFSOpen.

HAPP hApp
The application handle to be associated with the session being opened.
See WESOpen, WFSCreateAppHandle and Sections 4.5 and 4.8.2 for details.

LPSTR IpszApplD
Points to a null-terminated string containing the application ID. See WFSOpen.

DWORD dwTracelLevel
See WFMSetTraceLevel. NULL turns off all tracing.

DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE WAIT to specify a
request that will wait until completion).

LPHSERVICE IphService
Pointer to the service handle (returned parameter).

HWND hWnd
The window handle which is to receive the completion message for this request.

DWORD awSrvcVersionsRequired
See WEFSOpen.

LPWFSVERSION [pSrvcVersion
See WFSOpen (returned parameter).

LPWFSVERSION [pSPIVersion
See WFSOpen (returned parameter).

LPREQUESTID /pRequestID
Pointer to the request identifier for this request (returned parameter).

Mode Asynchronous

Comments See WEFSOpen.

The application must call WFSFreeResult to deallocate the WFSRESULT data structure which
is pointed to by the completion message. Note thata WFSRESULT structure may be returned
even if the function completes with an error; see Section 4.14.

Messages WFS_OPEN_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

73

CWA 16926-1:2015 (E)

74

WFS_ERR_INVALID_APP_HANDLE
The specified application handle is not valid, i.e. was notcreated by a preceding create call.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_INVALID_SERVPROV
The file containing the Service Provider is invalid or corrupted.

WFS_ERR_INVALID_TRACELEVEL
The dwTracelLevel parameter does not correspond to a valid trace level or set of levels.

WFS_ERR_NO_SERVPROV

The file containing the Service Provider does not exist.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR _OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFS CancelBlockingCall and
WESIsBlocking are permitted at this time.

WFS_ERR_SERVICE_NOT_FOUND
The logical name is not a valid Service Provider name.

WFS_ERR_SPI_VER_TOO_HIGH
The range of versions of XFS SPI supportrequested by the XFS Manager is higher than any
supported by the Service Provider for the logical service being opened.

WFS_ERR_SPI_VER_TOO_LOW
The range of versions of XFS SPI supportrequested by the XFS Manager is lower than any
supported by the Service Provider for the logical service being opened.

WFS_ERR_SRVC_VER TOO_HIGH
The range of versions of the service-specific interface support requested by the application (in
the dwSrvcVersionsRequired parameter of this call) is higher than any supported by the Service
Provider for the logical service being opened.

WFS_ERR_SRVC_VER_TOO_LOW
The range of versions of the service-specific interface support requested by the application (in
the dwSrvcVersionsRequired parameter of this call) is lower than any supported by the Service
Provider for the logical service being opened.

WFS_ERR_VERSION_ERROR_IN_SRVC
Within the service, a version mismatch of two modules occurred.

The following error conditions are returned via the asynchronous command completion message,
as the sResult from the WFSRESULT structure. Any service-specific errors that can be returned
are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_DEV_NOT_READY
The function required device access, and the device was notready timed out.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_HARDWARE_ERROR
The function required device access,and an error occurred on the device.

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occurred on the
software.

WFS_ERR _TIMEOUT
The timeout interval expired.

CWA 16926-1:2015 (E)

WFS_ERR _VERSION_ERROR_IN_SRVC
Within the service, a version mismatch oftwo modules occurred.

See Also WFEFSOpen, WEFSClose, WEFSCreateAppHandle, WFSCancelAsyncRequest,
WFMSetTraceLevel

75

CWA 16926-1:2015 (E)

5.20 WFSRegister

HRESULT WFSRegister(hService, dwEventClass, hWndReg)

Enables event monitoring for the specified service by the specified window; all messages of the specified class(es)
are sent to the window specified in the #WndReg parameter. The synchronous version of WFS AsyncRegister.

Parameters HSERVICE hService
Handle to the Service Provider as returned by WFSOpen or WFSAsyncOpen. If this value is
NULL, and dwEventClassis SYSTEM_EVENTS, the XFS manager registers the application
for those systemevents generated by the Manageritself.

DWORD dwEventClass
The class(es) of events for which the application is registering. Specified as a set of bit masks
thatare logically ORed togetherinto this parameter.

HWND hWndReg
The window handle which is to be registered to receive the specified messages.

Mode Synchronous

Comments Issuing a WFSRegister for a service enables event monitoring on thatservice. WFSRegister
calls can be cumulative for the same window. For example, to receive notification for both system
and userevents, the application can call WESRegister with both SYSTEM EVENTS and
USER_EVENTS, as follows:

hr = WFSRegister(hPassbookl, SYSTEM_EVENTS | USER_EVENTS, hWndRegl);
or call them in two phases:

hr = WFSRegister(hPassbookl, SYSTEM_EVENTS, hWndRegl);

hr = WFSRegister(hPassbookl, USER_EVENTS, hWndRegl);

To cancel notifications use WFSDeregister.

Note that the Service Provider always monitors the service, regardless of whether an application
has registered for event monitoring. Issuing WFSRegister simply causes the Service Provider to

postmessages to the application in addition to handling the messages itself. See the discussion in
Section 4.11.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CANCELED
The request was canceled by WES CancelBlockingCall.

WFS_ERR CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_EVENT_CLASS

The dwEventClass parameter specifies one or more event classes not supported by the service.

WFS_ERR_INVALID_HSERVICE

The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWNDREG
The hWndReg parameter is not a valid window handle.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WESStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WESIsBlocking are permitted at this time.
See Also WFS AsyncRegister, WFSDeregister, WFS AsyncDeregister

76

CWA 16926-1:2015 (E)

5.21 WFSAsyncRegister

HRESULT

WFSAsyncRegister(hService, dwEventClass, hWndReg, hWnd, IpRequestID)

Enables event monitoring for the specified service by the specified window; all messages of the specified class(es)
are sent to the window specified in the #WndReg parameter. The asynchronous version of WFSRegister.

Parameters

Mode

Comments

Messages

Error Codes

HSERVICE hService
Handle to the Service Provider as returned by WFESOpen or WFSAsyncOpen. If this value is
NULL, and dwEventClassis SYSTEM_EVENTS, the XFS manager registers the application
for those systemevents generated by the Manageritself.

DWORD dwEventClass
See WEFSRegister.

HWND hWndReg
The window handle which is to be registered to receive the specified messages.

HWND hWnd
The window handle which is to receive the completion message for this request.

LPREQUESTID IpRequestiD
Pointer to the request identifier for this request (returned parameter).

Asynchronous

See WEFSRegister.

The application must call WFSFreeResult to deallocate the WFSRESULT data structure pointed
to by the completion message. Note that a WFSRESULT structure may bereturned even if the
function completes with an error; see Section 4.11.

WFS_REGISTER_COMPLETE

If the function return is not WFS_SUCCESS, it is one ofthe following error conditions,
indicating that the asynchronous operation was not initiated:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL _ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_EVENT_CLASS
The dwEventClass parameter specifies one or more event classes not supported by the service.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND

The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_HWNDREG

The hWndReg parameter is not a valid window handle.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFS CancelBlockingCall and
WESIsBlocking are permitted at this time.

77

CWA 16926-1:2015 (E)

See Also

78

The following error conditions can be returned via the asynchronous command completion
message, as the hResult from the WFSRESULT structure.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WESRegister, WFSDeregister, WFS AsyncDeregister

CWA 16926-1:2015 (E)

5.22 WFSSetBlockingHook

HRESULT

WFSSetBlockingHook(IpBlock Func, IppPrevFunc)

Establishes an application-specific blocking routine.

Parameters

Mode

Comments

Error Codes

See Also

XFSBLOCKINGHOOK IpBlock Func
Pointer to the procedure instance address of the blocking routine to be installed.

LPXFSBLOCKINGHOOK IppPrevFunc
Returned pointer to a pointer to the procedure instance of the previously installed blocking

routine.
Immediate

When this function is successfully issued by an application, it returns a pointer to the previously
installed blocking routine. The application may save this pointer so thatit can be restored if
desired. If such “nesting” is not required, the application can discard this value and simply use the
WESUnhookBlockingHook function to restore the default routine at any time.

See Section 4.12 for a complete discussion.

If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR _OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFS CancelBlockingCall and
WESIsBlocking are permitted at this time.

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

WES UnhookBlockingHook, WFSCancelBlockingCall, WFSIsBlocking

79

CWA 16926-1:2015 (E)

5.23 WFSStartUp

HRESULT

WFSStartUp(dwVersionsRequired, IpWFSVersion)

Establishes a connection between an application and the XFS Manager.

Parameters

Mode

Comments

80

DWORD dwVersionsRequired
Specifies the range of versions of the XFS Manager that the application can support. The low-
order word indicates the highest version of the XFS Manager the application can supportt; the
high-order word indicates the lowest version of the XFS Manager the application can support.
In each word, the low-order byte specifies the major version number and the high-order byte
specifies the minor version number (i.e. the numbers before and after the decimal).
Note: in order to allow intermediate minor revisions (e.g. between 1.10 and 1.20), the minor
version number should always be expressed as two decimal digits, i.e. 1.10, 1.11, 1.20, etc.

LPWFSVERSION [pWFSVersion
Pointer to the data structure that is to receive version support information and other details
about the current XFS implementation (returned parameter).

Immediate

This function is used by an application to register itself with the XFS Managerand specify the
version(s) of the XFS API specification it can use, and returns information on the specific XFS
implementation. It must be the first XFS API function called by an application. An application
may only issue further XFS functions after a successful WFSStartUp has completed.

In order to support future XFS implementations with maximum flexibility, a version negotiation
process takes place in WFSStartUp. An application specifies in the dwVersionsRequired
parameter therange of versions of the XFS API specification which it can support. If the range of
versions specified by the application overlaps the range of versions that the current
implementation of XFS Manager can support, the call succeeds. Otherwise the call fails.

Information describing the actual XFS implementation is returned by the XFS Managerin the
WPFSVERSION data structure (defined in Section 9.2). In particular, it returns the version it
expects the application to use (the highest common version), as well as the lowest and highest
versions it is capable of. If the call fails, WFSVERSION is still returned, to help with analysis of
the failure.

The version numbers refer to the API specification, specifically functions, parameters, data
structures, error codes, and messages. If there are any changes to these, the version number
should be changed.

This version negotiation allows an XFS application and the XFS Managerto operate successfully
if there is any overlap in their versions. The following chart gives examples of how WFSStartUp
works in conjunction with different application and XFS Manager versions:

dwVersionsRequired IpWFSVersion.wLowVersion | Return status from W FSStartUp: IpWFSVersion
(Versions required by IpWFSVersion.wHigh Version .wVersion
Application): (XFS Manager versions): (Result):
0x00010001 0x0001 WEFS SUCCESS 0x0001
(1.00) (1.00) (use 1.00)
0x00010A02 0x0001 0x0001 WFS_SUCCESS 0x0001
(1.00 - 2.10) (1.00) (use 1.00)
0x0B010B01 0x0001 0x0002 WFS_SUCCESS 0x0BO01
(1.11) (1.00 - 2.00) (use 1.11)
0x0B020003 0x0001 0x1402 WEFS_SUCCESS 0x1402
(2.11 - 3.00) (1.00 - 2.20) (use 2.20)
0x00010001 0x1402 0x0003 WTFS ERR_API VER TOO LOW | 0x0000
(1.00) (2.20 - 3.00) (fails)
0x0B010003 0x0001 0x0001 WEFS ERR_API VER TOO_HIGH 0x0000
(1.11 - 3.00) (1.00) (fails)

Note that a version negotiation error also generates a systemevent (see Section 10.8).

After making its last XFS call, an application must call WFSCleanUp to allow the XFS Manager
to release any resources allocated for the application.

Error Codes

See Also

CWA 16926-1:2015 (E)

The return value indicates whether the application was registered successfully (i.e. the XFS
Manager can support requests fromthe application). If the function was successful, the returned
value is WFS_SUCCESS; if not, it is one of the following error conditions:

WFS_ERR_ALREADY_STARTED
A WESStartUp has already been issued by the application, without an intervening
WEFSCleanUp.

WFS_ERR_API_VER_TOO_HIGH
The range of versions of XFS API support requested by the application is higher than any
supported by this particular XFS implementation.

WFS_ERR_API_VER_TOO_LOW
The range of versions of XFS API support requested by the application is lower than any
supported by this particular XFS implementation.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WESCleanUp

81

CWA 16926-1:2015 (E)

5.24 WFSUnhookBlockingHook

HRESULT

WFSUnhookBlockingHook()

Removes any previous blocking hook thathad been installed and reinstalls the default blocking mechanism.

Parameters

Mode

Comments

Error Codes

See Also

82

None.

Immediate

The function will always install the default routine, not the previous routine. If an application
wishes to nest blocking hook routines - i.e. to establish a temporary blocking call and then revert
to the previous mechanism - it must save and restore the value returned by the
WFSSetBlockingHook function. See Section 4.12.

If the function return is not WFS_SUCCESS, it is one ofthe following error conditions:

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR _NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFS CancelBlockingCall and
WESIsBlocking are permitted at this time.

WESSetBlockingHook

CWA 16926-1:2015 (E)

5.25 WFSUnlock

HRESULT

WFSUnlock(hService)

Releases a service that has been locked by a previous WFSLock or WESAsyncLock function. The synchronous
version of WFS AsyncUnlock.

Parameters

Mode

Comments

Error Codes

See Also

HSERVICE hService
Handle to the Service Provider as returned by WFSOpen or WFS AsyncOpen.

Synchronous
See Section 4.8.

If the function return is not WFS_SUCCESS, it is one ofthe following error conditions:

WFS_ERR_CANCELED
The request was canceled by WES CancelBlockingCall.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR _NOT_LOCKED
The application requesting a service be unlocked had not previously performed a successful
WFSLock or WFSAsyncLock.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WESIsBlocking are permitted at this time.

WES AsyncUnlock, WEFSLock, WEFSAsyncLock

83

CWA 16926-1:2015 (E)

5.26 WFSAsyncUnlock

HRESULT

WFSAsyncUnlock(hService, hWnd, IpRequestID)

Releases a service that has been locked by a previous WFSLock or WFSAsyncLock function. The asynchronous
version of WFS Unlock.

Parameters

Mode

Comments

Messages

Error Codes

See Also

84

HSERVICE hService
Handle to the Service Provider as returned by WFSOpen or WEFS AsyncOpen.

HWND hWnd
The window handle which is to receive the completion message for this request.

LPREQUESTID /pRequestID
Pointer to the request identifier for this request (returned parameter).

Asynchronous

See WFSUnlock and Section 4.8.

The application must call WFSFreeResult to deallocate the WFSRESULT data structure which

is pointed to by the completion message. Note thata WFSRESULT structure may be returned
even if the function completes with an error; see Section 4.14.

WFS_UNLOCK_COMPLETE

If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFESIsBlocking are permitted at this time.

The following error conditions are returned via the asynchronous command completion message,
as the hResult from the WFSRESULT structure:

WFS_ERR_CANCELED
The request was canceled by WES Cancel AsyncRequest.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_NOT_LOCKED
The application requesting a service be unlocked had not previously performed a successful
WEFSLock or WESAsyncLock.

WESUnlock, WFSLock, WFS AsyncLock

CWA 16926-1:2015 (E)

6. Service Provider Interface (SPI) Functions

The Service Provider functions are described in the following sections, in alphabetical order. The table below

shows the SPI functions, the sections in which they are defined, their modes, and the API functions they implement.
The asynchronous SPI functions behavior is influenced by whether the function is Deferred or Non-deferred [see

section 4.8 Exclusive Service and Device Access]. An asynchronous non-deferred function (for example

WFPRegister) can be processed completely by the service as soon as it is received. An asynchronous deferred
function (for example WFPExecute) cannotbe processed completely as soon as it arrives, because it may require
hardware and/oroperator interaction.

Sectio | XFS SPI Mode XFS API Mode

n

6.1 WFPCancelAsyncRequest | Immediate WES CancelAsyncRequest Immediate

6.1 WFPCancelAsyncRequest | Immediate WEFS CancelBlockingCall Immediate
(none) - WFSCleanUp Synchronous

6.2 WFPClose Asynchronous | WFSClose Synchronous

6.2 WFPClose Asynchronous | WFSAsyncClose Asynchronous
(none) - WFSCreateAppHandle Immediate

6.3 WFPDeregis ter Asynchronous | WFSDeregister Synchronous

6.3 WFPDeregister Asynchronous | WESAsyncDeregister Asynchronous
(none) - WFSDestroyAppHandle Immediate

6.4 WFPExecute Asynchronous | WFSExecute Synchronous

6.4 WFPExecute Asynchronous | WFSAsyncExecute Asynchronous
(none) - WFEFSFreeResult Immediate

6.5 WFPGetInfo Asynchronous | WFSGetlnfo Synchronous

6.5 WFPGetInfo Asynchronous | WFS AsyncGetlnfo Asynchronous
(none) - WFSIsBlocking Immediate

6.6 WFPLock Asynchronous | WFSLock Synchronous

6.6 WFPLock Asynchronous | WFSAsyncLock Asynchronous

6.7 WFPOpen Asynchronous | WFSOpen Synchronous

6.7 WFPOpen Asynchronous | WFSAsyncOpen Asynchronous

6.8 WFPRegister Asynchronous | WESRegister Synchronous

6.8 WFPRegister Asynchronous | WFSAsyncRegister Asynchronous
(none) - WFESSetBlockingHook Immediate

6.9 WFPSetTraceLevel Immediate (none) -
(none) - WESStartUp Immediate
(none) - WEFSUnhookBlockingHook | Immediate

6.10 WFPUnloadService

6.11 WFPUnlock Asynchronous | WEFSUnlock Synchronous.

6.11 WFPUnlock Asynchronous | WFSAsyncUnlock Asynchronous

Note that in this section device drivers and devices are mentioned frequently, instead of Service Providers and

services. This is due primarily to the fact thataccess to financial peripheral devices is the first category of financial
services being addressed by the BSVC. However, note thatin the future other financial services will be part of the
Extensions to Financial Services, and will also use these interfaces, with additions as necessary. See Appendix A
for more on this subject.

85

CWA 16926-1:2015 (E)

6.1 WFPCancelAsyncRequest

HRESULT

WFPCancelAsyncRequest(hService, RequestID)

Cancels the specified (or every) asynchronous request being performed on the specified Service Provider, before its
(their) completion.

Parameters

Mode

Comments

Error Codes

86

HSERVICE hService
Handle to the Service Provider.

REQUESTID Request/D
The request identifier (NULL to cancel all requests for the specified AService).

Immediate. Although the cancellation process itselfis asynchronous, the completion message(s)
are associated with the original request, not the cancel request (even if they indicate a
WFS_ERR CANCELED status).

If the RequestID parameter is set to NULL, the command will cancel all asynchronous requests
on the specified service thatare in progress on behalf of the calling application.

A previously initiated asynchronousrequest is canceled prior to completion by issuing the

WEFES CancelAsyncRequest function, specifying the request identifier returned by the
asynchronous function. This function is immediate with respecttoits calling application, but the
cancellation process is inherently asynchronous. On completion, the specified request (or all the
requests) will have finished, with a completion message indicating a status of

WFS ERR CANCELED, unless the cancel request was made after the request had completed.

The cancellation applies to the Service Provider level. The requestis passed through the SPI, and
the Service Provider normally then also cancels any physical I/O or other device operation in
progress, in the appropriate manner for the device or service.

If the function return is not WFS_SUCCESS, it is one ofthe following error conditions:

WFS_ERR CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_REQ_ID
The RequestID parameter does not correspond to an outstanding request on the service.

CWA 16926-1:2015 (E)

6.2 WFPClose

HRESULT

WFPClose(hService, hWnd, ReqID)

Terminates a session (aseries of service requests initiated with the WFPOpen SPI function) between the XFS
Manager and the specified Service Provider.

Parameters

Mode

Comments

Messages

Error Codes

HSERVICE hService
Handle to the Service Provider.

HWND hWnd
The window handle which is to receive the completion message for this request.

REQUESTID Reql/D

Request identification number.
Asynchronous

WFPClose directs the service to free all resources associated with the series of requests made
using the hService parameter. If the service is locked by the application, the close automatically
unlocks it. If no WFPDeregister has been issued, it is automatically performed.

See WFPOpen and Section 4.6 for further discussion.

WFS_CLOSE_COMPLETE

If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated. The service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR _CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

The following error conditions are returned via the asynchronous command completion message,
as the hResult from the WFSRESULT structure. Any service-specific errors that can be returned
are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

87

CWA 16926-1:2015 (E)

6.3 WFPDeregister

HRESULT

WFPDeregister(hService, dwEventClass, hWndReg, hWnd, ReqlID)

Discontinues monitoring of the specified message class(es) from the specified Service Provider, by the specified
hWndReg (or all hWnd's).

Parameters

Mode

Comments

Messages

Error Codes

88

HSERVICE hService
Handle to the Service Provider

DWORD dwEventClass

The class(es) of messages from which the application is deregistering. Specified as a set of bit
masks that can be logically ORed together. A NULL value requests that all message classes be

deregistered from the specified window for this Service Provider.

HWND hWndReg
The window to which notification messages are posted. A NULL value requests that all the

application's windows be deregistered from the specified message class(es) for this AService.

HWND hWnd
The window handle which is to receive the completion message for this request.

REQUESTID ReqlD
Request identification number.

Asynchronous

WFPDeregister does notstop asynchronous command completion messages from being posted;
arobustapplication should be designed to accept these messages even after a deregister is issued.

A WFPDeregister os performed automatically if a WFPClose is issued without a previous
WFPDeregis ter.

To deregister all messages for all hWnds, the call supplies NULL values for both the
dwEventClass and hWnd parameters.

See the WFPRegister function for a description of the types of events that may be monitored.
WFS_DEREGISTER_COMPLETE

If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated. Any service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_EVENT_CLASS

The dwEventClass parameter specifies one or more event classes not supported by the service.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_HWNDREG
The hWndReg parameter is not a valid window handle.

WFS_ERR_NOT_REGISTERED
The specified h#WndReg window was not registered to receive messages for any event classes.

The following error condition is returned via the asynchronous command completion message, as
the hResult from the WFSRESULT structure. Any service-specific errors that can be returned are
defined in the specifications for each service class.

CWA 16926-1:2015 (E)

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

89

CWA 16926-1:2015 (E)

6.4 WFPEXxecute

HRESULT

WFPExecute(hService, dwCommand, IpCmdData, dwTimeOut, hWnd, ReqlD)

Sends asynchronous service class specific commands to a Service Provider.

Parameters

Mode
Comments
Messages

Error Codes

90

HSERVICE hService
Handle to the Service Provider.

DWORD dwCommand
Command to be executed.

LPVOID IpCmdData
Pointer to the data structure to be passed.

DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE WAIT to specify a
request that will wait until completion).

HWND hWnd
The window handle which is to receive the completion message for this request.

REQUESTID ReqlD
Request identification number.

Asynchronous
See WFSExecute.
WFS_EXECUTE_COMPLETE

If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating thatthe asynchronous operation was not initiated. Any service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR _CONNECTION_LOST

The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_COMMAND
The dwCommand issued is not supported by this service class.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

WFS_ERR_UNSUPP_COMMAND
The dwCommand issued, although valid for this service class, is not supported by this Service
Provider.

The following error conditions are returned via the asynchronous command completion message,
as the hResult from the WFSRESULT structure. Any service-specific errors that can be returned
are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_DEV_NOT_READY
The function required device access, and the device was not ready or timed out.

CWA 16926-1:2015 (E)

WFS_ERR_HARDWARE_ERROR
The function required device access, and an error occurred on the device.

WFS_ERR_INVALID_DATA
The data structure passed as input parameter contains invalid data.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_LOCKED
The service is locked under a different AService.

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occurred on the
software.

WFS_ERR_TIMEOUT
The timeout interval expired.

WFS_ERR_USER_ERROR
A user is preventing proper operation of the device.

WFS_ERR_UNSUPP_DATA
The data structure passed as an input parameter although valid for this service class, is not
supported by this Service Provider or device.

WFS_ERR_FRAUD ATTEMPT

Some devices are capable of identifying a malicious physicalattack which attempts to defraud
valuable information or media. In these cases, this error code is returned to indicate the useris

attempting a fraudulent act on the device.

91

CWA 16926-1:2015 (E)

6.5 WFPGetinfo

HRESULT WFPGetiInfo(hService, dwCategory, IpQueryDetails, dwTimeOut, hWnd, ReqlD)

Retrieves various kinds of information from the specified Service Provider.

Parameters HSERVICE hService
Handle to the Service Provider.

DWORD dwCategory
Specifies the category of the query (e.g. for a printer, WFS_INF _PTR STATUS to request
status or WFS_INF_PTR _CAPABILITIES torequestcapabilities). The available categories
depend on the service class, the Service Provider and the service. The information requested
can be either static or dynamic, e.g. basic service capabilities (static) or current service status
(dynamic).

LPVOID IpQueryDetails
Pointer to the data structure to be passed to the Service Provider, containing further details to
make the query more precise, e.g. a form name. (Many queries have no input parameters, in
which case this pointer is NULL.)

DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE WAIT to specify a
request that will wait until completion).

HWND hWnd
The window handle which is to receive the completion message for this request.

REQUESTID Reql/D

Request identification number.
Mode Asynchronous

Comments The XFS Manager retrieves the information requested from the Service Provider itself, and, since
the information can be stored remotely, the function cannot be guaranteed to complete
immediately. Note that, typically, requests for generic and class specific categories can complete
immediately. See WEFSGetInfo for additional discussion.

The specifications for the information structures for each service class can be found in the
specifications for the service-specific commands.

Messages WFS_GETINFO_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one ofthe following error conditions,
indicating that the asynchronous operation was not initiated. Any service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_CATEGORY
The dwCategory issued is not supported by this service class.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_UNSUPP_CATEGORY
The dwCategory issued, although valid for this service class, is not supported by this Service
Provider.

92

CWA 16926-1:2015 (E)

The following error conditions are returned via the asynchronous command completion message,
as the AResult from the WFSRESULT structure. Any service-specific errors that can be returned
are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_DEV_NOT_READY
The function required device access, and the device was notready or timed out.

WFS_ERR_HARDWARE_ERROR
The function required device access, and an error occurred on the device.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_DATA
The data structure passed as input parameter contains invalid data.

WFS_ERR_SOFTWARE_ERROR

The function required access to configuration information, and an error occurred on the
software.

WFS_ERR _TIMEOUT
The timeout interval expired.

WFS_ERR_USER_ERROR
A user is preventing proper operation of the device.

WFS_ERR _UNSUPP_DATA
The data structure passed as an input parameter although valid for this service class, is not
supported by this Service Provider or device.

93

CWA 16926-1:2015 (E)

6.6 WFPLock

HRESULT

WFPLock(hService, dwTimeOut, hWnd, ReqlID)

Establishes exclusive control by the calling application over the specified service.

Parameters

Mode
Comments

Messages

Error Codes

94

HSERVICE hService
Handle to the Service Provider.

DWORD dwTimeOQOut
Number of milliseconds to wait for completion (WFS_INDEFINITE WAIT to specify a
request that will wait until completion).

HWND hWnd
The window handle which is to receive the completion message for this request.

REQUESTID ReqlD
Request identification number.

Asynchronous
See WEFSLock.
WFS_LOCK_COMPLETE

If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated. Any service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR _CONNECTION_LOST
The connection to the service is lost.

WFS_ERR _INTERNAL_ERROR

An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE

The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

The following error conditions are returned via the asynchronous command completion message,
as the AResult from the WFSRESULT structure. Any service-specific errors that can be returned
are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR _DEV_NOT_READY
The function required device access,and the device was notready or timed out.

WFS_ERR_HARDWARE_ERROR

The function required device access,and an error occurred on the device.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occurred on the
software.

WFS_ERR_TIMEOUT
The timeout interval expired.

CWA 16926-1:2015 (E)

6.7 WFPOpen

HRESULT

WFPOpen(hService, IpszLogicalName, hApp, IpszApplD, dwTracelLevel, dwTimeOut,

hWhnd, ReqlD, hProvider, dwSPIVersionsRequired, IpSPIVersion,
awSrvcVersionsRequired, IpSrvcVersion)

Establishes a connection between the XFS Managerand the Service Provider that supports the specified service,
and initiates a session (a series of service requests terminated with the WFPClose function).

Parameters

Mode

HSERVICE hService
The service handle to be associated with the session being opened.

LPSTR IpszLogicalName
Points to a null-terminated string containing the pre-defined logical name ofa service. It is a
high level name suchas "SYSJOURNALIL," "PASSBOOKPTR3" or "ATMO02," that is used by
the XFS Manager and the Service Provider as a key to obtain the specific configuration
information they need.

HAPP hApp
The application handle to be associated with the session being opened.
See WESCreateAppHandle and Sections 4.5 and 4.8.2 for details.

LPSTR IpszApplD
Pointer to a null terminated string containing the application ID; the pointer may be NULL if
the ID is not used.

DWORD dwTracelevel
See WEFPSetTraceLevel.

DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE WAIT to specify a
request that will wait until completion).

HWND hWnd
The window handle which is to receive the completion message for this request.

REQUESTID Req/D
Request identification number.

HPROVIDER hProvider
Service Provider handle supplied by the XFS Manager - used by the Service Provider to
identify itself when calling the WFMReleaseDLL function.

DWORD dwSPIVersionsRequired
Specifies the range of XFS SPI versions that the XFS Manager can support. (See Comments.)
The low-order word indicates the highest version the XFS Manager can support; the high-order
word indicates the lowest version the XFS Manager can support. In each word, the low-order
byte specifies the major version number and the high-order byte specifies the minor version
number (i.e. the numbers before and after the decimal).
Note: in order to allow intermediate minor revisions (e.g. between 1.10 and 1.20), the minor
version number should always be expressed as two decimal digits, i.e. 1.10, 1.11, 1.20, etc.

LPWFSVERSION [pSPIVersion
Pointer to the data structure thatis to receive SPI version support information and (optionally)
other details about the SPI implementation (returned parameter).

DWORD dwSrvcVersionsRequired
Service-specific interface versions required; see dwSPI[VersionsRequired above,and
WEFS Open.

LPWFSVERSION [pSrvcVersion
Pointer to the service-specific interface implementation information; see [pSPIVersion above,
and WFSOpen (returned parameter).

Asynchronous

95

CWA 16926-1:2015 (E)

Comments

96

This function establishes the connection between the XFS Managerand the Service Provider,
including version negotiation and passing of implementation information, and initiates a session
between the application and the service. This call is made by the XFS Manager each time any
application issues a WFSOpen or WFSAsyncOpen call to the specified service (immediately
after loading the Service Provider DLL, if it is not already loaded).

In order to support future XFS implementations with maximum flexibility, two version
negotiations take place in WFPOpen. In the first, the XFS Manager specifies in the
dwSPIVersionsRequired parameter the range of versions of the XFS SPI specification which it
can supportt. If therange of versions specified by the XFS Manager overlaps the range of versions
thatthe Service Provider can support,the call succeeds. Otherwise the call fails.

The WFSVERSION data structure (described in Section 9.2) is used by the Service Provider to
return the version of SPI supportit expects the XFS Manager to use (the highest common
version), as well as the lowest and highest versions it is capable of. In addition, this structure is
used optionally by the XFS Manager to specify otherinformation aboutthe Service Provider
implementation. If the call fails, WFSVERSION is still returned, to help with analysis of the
failure.

The version numbers refer to the SPI specification, specifically functions, parameters, data
structures, error codes,and messages. If there are any changes to these, the version number
should be changed.

This version negotiation allows the XFS Managerand a Service Provider to operate successfully
if there is any overlap in their versions. The following chart gives examples of how WFPOpen
works in conjunction with different XFS Manager and Service Provider versions:

dwSPIVersions- IpSPIVersion.wLowVersion Return status from W FPOpen: IpSPIVersions
Required (Versions | lpSPIVersion.wHighVersion .wVersion
required by XFS (Service Provider versions): (Result):
Manager):

0x00010001 0x0001 0x0001 WFS_SUCCESS 0x0001
(1.00) (1.00) (use 1.00)
0x00010A02 0x0001 0x0001 WFS_SUCCESS 0x0001
(1.00 - 2.10) (1.00) (use 1.00)
0x0B010B0O1 0x0001 0x0002 WFS_SUCCESS 0x0B01
(1.11) (1.00 - 2.00) (use 1.11)
0x0B020003 0x0001 0x1402 WFS_SUCCESS 0x1402
(2.11 - 3.00) (1.00 - 2.20) (use 2.20)
0x00010001 0x1402 0x0003 WFS ERR_SPI_VER TOO_LOW 0x0000
(1.00) (2.20 - 3.00) (fails)
0x0B010003 0x0001 0x0001 WFS_ERR_SPI_VER TOO_HIGH 0x0000
(1.11 - 3.00) (1.00) (fails)

The second negotiation is in relation to the service-specific interface, between the application
program and the Service Provider. The following chart gives examples of how WFPOpen works
in conjunction with different application and Service Provider versions. See WFESOpen, Section
5.19, for details.

dwSrvcVersions- IpSrvcVersion.wLowVersion Return status from W FPOpen: IpSrvcVersions
Required (Versions | lpSrvcVersion.wHighVersion .wVersion
required by the (Service Provider versions): (Result):
application):

0x00010001 0x0001 0x0001 WFS_SUCCESS 0x0001
(1.00) (1.00) (use 1.00)
0x00010A02 0x0001 0x0001 WFS_SUCCESS 0x0001
(1.00 - 2.10) (1.00) (use 1.00)
0x0B010B0O1 0x0001 0x0002 WFS_SUCCESS 0x0BO1
(1.11) (1.00 - 2.00) (use 1.11)
0x0B020003 0x0001 0x1402 WFS_SUCCESS 0x1402
(2.11 - 3.00) (1.00 - 2.20) (use 2.20)
0x00010001 0x1402 0x0003 WEFS ERR _SRVC VER TOO LOW 0x0000
(1.00) (2.20 - 3.00) (fails)
0x0B010003 0x0001 0x0001 WFS_ERR_SRVC_VER _TOO_HIGH | 0x0000
(1.11 - 3.00) (1.00) (fails)

Note that a version negotiation error also generates a systemevent (see Section 10.8).

Also, see WEFSStartUp, Section 5.23.

Messages

Error Codes

CWA 16926-1:2015 (E)

WFS_OPEN_COMPLETE

If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated. Any service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_INVALID_TRACELEVEL
The dwTraceLevel parameter does not correspond to a valid trace level or set of levels.

WFS_ERR_SPI_VER_TOO_HIGH
The range of versions of XFS SPI supportrequested by the XFS Manager is higher than any
supported by this particular Service Provider.

WFS_ERR_SPI_VER_TOO_LOW
The range of versions of XFS SPI supportrequested by the XFS Manager is lower than any
supported by this particular Service Provider.

WFS_ERR_SRVC_VER _TOO_HIGH
The range of versions of the service-specific interface support requested by the application is
higher than any supported by the Service Provider for the logical service being opened.

WFS_ERR SRVC_VER TOO_LOW
The range of versions of the service-specific interface support requested by the application is
lower than any supported by the Service Provider for the logical service being opened.

WFS_ERR _VERSION ERROR_IN_SRVC
Within the service, a version mismatch oftwo modules occurred.

The following error conditions are returned via the asynchronous command completion message,
as the hResult from the WFSRESULT structure. The service-specific errors that can be returned
are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR _TIMEOUT
The timeout interval expired.

WFS_ERR VERSION _ERROR_IN_SRVC
Within the service, a version mismatch of two modules occurred.

97

CWA 16926-1:2015 (E)

6.8 WFPRegister

HRESULT

WFPRegister(hService, dwEventClass, hWndReg, hWnd, ReqID)

Enables event monitoring for the specified service by the specified ZWndReg; all events of the specified class(es)
generate messages to the #WndReg.

Parameters

Mode
Comments

Messages

Error Codes

98

HSERVICE hService
Handle to the Service Provider.

DWORD dwEventClass
The class(es) of events for which the application is registering. Specified as a set of bit masks
that can be logically ORed together.

HWND hWndReg
The window handle which is to be registered to receive the specified messages.

HWND hWnd
The window handle which is to receive the completion message for this request.

REQUESTID Req/D
Requestidentification number.

Asynchronous

WFPDeregister is used to cancel notifications. See WFSRegister.
WFS_REGISTER_COMPLETE

If the function return is not WFS_SUCCESS, it is one ofthe following error conditions,
indicating thatthe asynchronous operation was not initiated. Any service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_EVENT_CLASS
The dwEventClass parameter specifies one or more event classes not supported by the service.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_HWNDREG
The hWndReg parameter is not a valid window handle.

The following error conditions are returned via the asynchronous command completion message,
as the AResult from the WFSRESULT structure. Any service-specific errors that can be returned
are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

CWA 16926-1:2015 (E)

6.9 WFPSetTraceLevel

HRESULT

WFPSetTracelLevel(hService, dwTracelLevel)

Sets the specified trace level(s) at run time, in and/or below the Service Provider. See WFMSetTraceLevel.

Parameters

Mode

Comments

Error Codes

See Also

HSERVICE hService
Handle to the Service Provider.

DWORD dwTracelevel
The level(s) of tracing being requested. See below.

Immediate

Issuing WFPSetTraceLevel for a service enables tracing on that service at various levels. The
predefined trace levels that can be used in this function, with their meanings to the Service
Provider, are as follows (see WFMSetTraceLevel for the API and support function trace levels):

WFS_TRACE_SPI 0x00000004

Trace all the SPI calls to the Service Provider, and notification and event messages generated
by the Service Provider, that are associated with the specified hService.

WFS_TRACE_ALL_SPI 0Xx00000008

Trace all SPI, notification and event activity of the Service Provider (the AService parameter is
notrelevant to this trace level).

Other standard trace levels may be defined in the future, and a range of trace level values (the
high order 16 bits of this parameter) is reserved for use by individual Service Providers. Example
of other functions that may be traced include network messages, interactions between the Service
Provider and service, and device interface interaction.

Trace level values can be ORed togetherin a single dwTraceLevel parameter to request more than
one kind of tracing be started. A NULL value stops all tracing in the Service Provider.

If more than one process may be using the trace facility, this function should always be preceded
with the WFMGetTraceLevel function. This value returned by this function is ORed together
with the new trace level(s), and the resulting value is used with WFMSetTraceLevel, thus
adding the new trace level(s) to whatever the existing trace level(s) had been,

This function has the highest priority to the Service Provider; it activates the trace as soon as
possible.

WFPOpen also includes an option to set these trace levels, to allow the open process itself to be
traced.

If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_TRACELEVEL
The dwTraceLevel parameter does not correspond to a valid trace level or set of levels.

WFS_ERR _NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR _OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFS CancelBlockingCall and
WESIsBlocking are permitted at this time.

WEMGetTraceLevel, WESOpen, WEFSAsyncOpen

99

CWA 16926-1:2015 (E)

6.10 WFPUnloadService

HRESULT WFPUnloadService()
Asks the called Service Provider whether it is OK for the XFS Managerto unload the Service Provider’s DLL.

Parameters None
Mode Immediate
Comments This function is issued after the XFS Manager has received a WFMReleaseDLL request from the

Service Provider or during the processing of the WFSCleanUp command. The Service Provider
returns WFS_SUCCESS only if it has fully “cleaned up,”i.e. has freed any resources it has
allocated, has no separate threads running, etc. If this is not true, it returns the error below, and
initiates or continues the clean up process.

Error Codes If the function return is not WFS_SUCCESS, it is one ofthe following error conditions:

WFS_ERR _NOT_OK_TO_UNLOAD
The XFS Manager may notunload the Service Provider DLL at this time. It will repeat this
request to the Service Provider until the return is WFS_SUCCESS, or until a new session is
started by an application with this Service Provider.

100

CWA 16926-1:2015 (E)

6.11 WFPUnlock

HRESULT

WFPUnlock(hService, hWnd, ReqlD)

Releases a service that has been locked by a previous WFPLock function.

Parameters

Mode
Comments

Messages

Error Codes

HSERVICE hService
Handle to the Service Provider

HWND hWnd
The window handle which is to receive the completion message for this request.

REQUESTID Reql/D

Request identification number.
Asynchronous
See WFPLock, WFSLock, WFSUnlock and Section 4.9.
WFS_UNLOCK_COMPLETE

If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated. Any service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR _CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

The following error conditions are returned via the asynchronous command completion message,
as the hResult from the WFSRESULT structure. Any service-specific errors that can be returned
are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR _NOT_LOCKED
The service to be unlocked is not locked underthe calling AService.

101

CWA 16926-1:2015 (E)

7. SupportFunctions

Support functions are services of the XFS Manager used by Service Providers and applications. All the functions
are immediate,since they are completely processed inside the XFS Manager, or use only immediate functions of

the Service Providers.

7.1 WFMAllocateBuffer

HRESULT

WFMAIllocateBuffer(u/Size, ulFlags, IppvData)

Allocates a memory buffer for the Service Provider in which to return results.

Parameters

Comments

Error Codes

See Also

102

ULONG ulSize
Size (in bytes)of the memory to be allocated.

ULONG ulFlags
Flags, see comments below.

LPVOID *IppvData
Address of the variable in which the XFS Managerwill place the pointer to the allocated
memory.

A Service Provider must use this call when creating data structures for the XFS Manageror an
application to use, and may use it when allocating memory for its own private use. The flags can
be ORed together, and specify:

WFS MEM_SHARE Allocates shareable memory.
WFS MEM_ZEROINIT Initializes memory contents to zero (notrequired in Win32 or
Win64).

The application, XFS Manager or Service Provider then must, in turn, use the WFSFreeResult or
WFEFMFreeBuffer functions to deallocate the memory.

If the function return is not WFS_SUCCESS, it is one of the following error conditions:
WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

WFS_ERR_OUT_OF_MEMORY
There is notenough memory available to satisfy the request.

WFMAIllocate More, WFMFreeBuffer, WFSFreeResult and Section 4.14.

CWA 16926-1:2015 (E)

7.2 WFMAllocateMore

HRESULT

WFMAIllocateMore(ulSize, IpvOriginal, IppvData)

Allocates a memory buffer, linking it to a previously allocated one.

Parameters

Comments

Error Codes

See Also

ULONG ulSize
Size (in bytes)of the memory to be allocated

LPVOID IpvOriginal
Address of the original buffer to which the newly allocated buffer should be linked

LPVOID *IppvData
Address of the variable in which the XFS Managerwill place the pointer to the newly allocated
memory.

This function allocates an additional memory buffer and link it to one previously allocated by
WFMAIllocateBuffer. The returned buffer has the same properties as the previous buffer (i.e. the
WFS MEM_ SHARE and WFS_ MEM_ZEROINIT flags) and it can be freed only by freeing the

original buffer (using WFMFreeBuffer or WFSFreeResult).
If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_INVALID_ADDRESS
The IpvOriginal parameter does not point to a previously allocated buffer.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_OUT_OF_MEMORY
There is notenough memory available to satisfy the request.

WFMAllocateBuffer, WFMFreeBuffer, WFSFreeResult and Section 4.14.

103

CWA 16926-1:2015 (E)

7.3 WFMFreeBuffer

HRESULT

WFMFreeBuffer([pvData)

Releases the memory buffer(s) allocated by WFMAllocateBuffer and WFMAllocate More.

Parameters

Comments

Error Codes

See Also

104

LPVOID IpvData
Address of the memory buffer to free.

See WFMAIllocateBuffer and WFSFreeResult. This function frees a set of one or more linked
buffers, as does the WFSFreeResult API function, except thatit is used by Service Providers to
free memory thatthey have allocated for "private" use, via the WFMAIllocateBuffer and
WFMAllocateMore functions.

If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_INVALID_BUFFER
The IpvData parameter is not a pointer to an allocated buffer structure.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFMAllocateBuffer, WFMAIllocate More, WEFSFreeResult and Section 4.14.

CWA 16926-1:2015 (E)

7.4 WFMGetTraceLevel

HRESULT

WFMGetTracelLevel(hService, IpdwTracelLevel)

Returns the trace level associated with the specified AService (at run time). See WFMSetTrace Le vel.

Parameters

Mode

Comments

Error Codes

See Also

HSERVICE hService
Handle to the Service Provider as returned by WESOpen or WES AsyncOpen.

LPDWORD /pdwTracelLevel
Pointer to the value defining the current trace level (returned parameter).

Immediate

This function returns the current tracing levels in the XFS Manager and the Service Provider
specified by AService. See WFMSetTraceLevel.

If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WESStartUp.

WFS_ERR _OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WESIsBlocking are permitted at this time.

WEFMSetTraceLevel, WFSOpen, WFSAsyncOpen

105

CWA 16926-1:2015 (E)

7.5 WFMKillTimer

HRESULT WFMKIillTimer(wTimerID)

Cancels thetimer identified by the wTimerID parameter. Any pending WFS_TIMER EVENT message associated
with the timer is removed from the message queue.

Parameters WORD wTimerlD
ID of the timer to be canceled.

Comments See WFMSetTimer.

Error Codes If the function return is not WFS_SUCCESS, it is the following error condition:
WFS_ERR_INVALID_TIMER

The wTimerID parameter does not correspond to a currently active timer.

106

CWA 16926-1:2015 (E)

7.6 WFMOutputTraceData

HRESULT WFMOutputTraceData(IpszData)
Requests the XFS Manager to output the specified datato the current trace destination.
Parameters LPSTR IpszData

Pointer to a null-terminated string containing the trace data.

Comments Normally used by a Service Provider that has been requested via WFMSetTraceLevel to trace its
operation. The XFS Manager adds standard header information (timestamp, etc.) to the data
before writing it to the trace stream. Note thatthe XFS Manager also writes data to the trace
stream if the appropriate trace level(s) have been requested.

Error Codes If the function return is not WFS_SUCCESS, it is the following error condition:

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

107

CWA 16926-1:2015 (E)

7.7 WFMReleaseDLL

HRESULT WFMReleaseDLL(hProvider)

Notifies the XFS Managerthat the Service Provider is available to be unloaded from memory.

Parameters HPROVIDER hProvider
Handle to the Service Provider, obtained from the XFS Manager in the WFPOpen call.

Comments This function initiates the process in which the Service Provider is unloaded from memory by the
XFS Manager. However, note that the Managermust issue the WFPUnloadService function to
the Service Provider before it actually unloads the Service Provider DLL. The recommended
procedure is as follows:

o The Service Provider finishes processing the WFPClose for its last open session

e The Service Provider does appropriate cleanup (deallocating memory, killing separate
threads, etc.)

e The Service Provider posts the WFS _CLOSE COMPLETE message for the final close

e The Service Provider calls WFMReleaseDLL, and after the return from this call, does
nothing other than return from the procedure that called WFMReleaseDLL

o The XFS Manager calls WFPUnloadService, verifying thatthe Service Provider is in fact
still ready to be unloaded

e Ifthe Service Provider says OK, the XFS Manager unloads the Service Provider DLL

Error Codes If the function return is not WFS_SUCCESS, it is the following error condition:

WFS_ERR_INVALID_HPROVIDER
The hProviderparameter is not a valid provider handle.

108

CWA 16926-1:2015 (E)

7.8 WFMSetTimer

HRESULT WFMSetTimer(hWnd, IpContext, dwTimeVal, IpwTimerID)

Starts a systemtimer.

Parameters HWND hWnd
The window to which the requested timer message is to be posted.

LPVOID IpContext
Context pointer supplied by the Service Provider requesting the timer; may be NULL.

DWORD dwTimeVal
Timer value (in milliseconds).

LPWORD IpwTimerlD
Pointer to the timer identifier (returned parameter).

Comments The WFMSetTimer function requests the XFS Manager to start a system timer with the specified
time value; when that time interval expires, the XFS Manager posts a WFS_TIMER EVENT
message to the specified 2 Wnd, containing the wTimerID value and the I[pContext pointer.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

109

CWA 16926-1:2015 (E)

7.9 WFMSetTracelLevel

HRESULT

WFMSetTracelLevel(hService, dwTracelLevel)

Sets the specified trace level(s) at run time; to be used for debugging and testing purposes.

Parameters

Mode

Comments

Error Codes

110

HSERVICE hService
Handle to the Service Provider as returned by WESOpen or WES AsyncOpen.

DWORD dwTracelevel
The level(s) of tracing being requested. See below.

Immediate

Issuing WFMSetTraceLevel fora service enables tracing on that service at various levels. Five
standard trace levels are predefined:

WFS_TRACE_API ©x00000001
Trace all input and output parameters of all API function calls using the specified hService.
WFS_TRACE_ALL_API 0x00000002

Trace all input and output parameters of all API function calls associated with the Service
Provider identified by the specified AService, not just the ones associated with the specified

hService.
WFS_TRACE_SPI 0x00000004

Trace all input and output parameters of all SPI function calls associated with the specified
hService, as well as all notification and event messages generated by the Service Provider for
the hService.

WFS_TRACE_ALL_SPI 0XxX00000008

As for WFS_ TRACE ALL API, but trace all SPI, notification and event activity on the
Service Provider, not just that associated with the specified hService.

WFS_TRACE_MGR 0x00000010
Trace the support functions (WFMxxxxx) of the XFS Manager.

Other standard trace levels may be defined in the future, and a range of trace level values (the
high order 16 bits of this parameter) is reserved for use by individual Service Providers.
Examples of other functions that may be traced include network messages, interactions between
the Service Provider and service, and device interface interaction.

Trace level values can be ORed togetherin a single dwTraceLevel parameter to request more than
one kind of tracing be started. A NULL value stops all tracing.

If more than one process may be using the trace facility, this function should always be preceded
with a call to the WFMGetTraceLevel function. This value returned by this function is ORed
together with the new trace level(s), and the resulting value is used with WFMSetTraceLevel,
thus adding the new trace level(s) to whatever the existing trace level(s) had been,

This function has the highest priority to the XFS Manager and the Service Provider; they activate
the trace as soon as possible. Note that the XFS Managerperforms all the traces defined above,
other than the completion and event messages posted by the Service Providers.

WFEFSOpen and WFSAsyncOpen also include an option to set these trace levels, to allow the
open process itself to be traced.
If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_TRACELEVEL
The dwTraceLevel parameter does not correspond to a valid trace level or set of levels.

CWA 16926-1:2015 (E)

WFS_ERR _NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFS CancelBlockingCall and
WESIsBlocking are permitted at this time.

See Also WFMGetTraceLevel, WFPSetTraceLevel, WFESOpen, WFSAsyncOpen

111

CWA 16926-1:2015 (E)

8. Configuration Functions

See Section 4.7 for the overall discussion of configuration information and how it is stored within the Windows
Registry.

8.1 WFMCloseKey

HRESULT WFMCloseKey (hKey)
Closes the specified key.

Parameters HKEY hKey
Handle to the currently open key thatis to be closed.

Comments The hKey handle can not be used after it has been closed, because it will no longer be valid. Note
thatit is not valid to close the XFS rootkey (passing one of the pre-defined handles as the value
for the AKey parameter).

Error Codes If the function return is not WFS_SUCCESS, it is the following error condition:

WFS_ERR_CFG_INVALID_HKEY
The specified #Key parameter does not correspond to a currently open key, or it is the XFS
root.

112

CWA 16926-1:2015 (E)

8.2 WFMCreateKey

HRESULT WFMCreateKey (hKey, IpszSubKey, phk Result, IpdwDisposition)

Creates a new key, or if the specified key exists, opens it.

The first use of hKey by a process sets the migration mode for that process. The use of this function is an
application decision: the XFS Managermust not automatically migrate the registry values at load time.

Be aware that when the WFMCreateKey is used for the first time and the #Key parameter is set to

WFS_CFG HKEY XFS ROOT then theexisting registry structure will be migrated from

HKEY CLASSES ROOT to HKEY LOCAL MACHINE. If either of the new values

WFS_CFG MACHINE XFS ROOT or WFS_CFG USER DEFAULT XFS ROOT are used then no migration
will take place for this process. The assumption is that any process using the new key values will be doing its own
migration. The reason migration does notalways take place is that some applications will require access to both the
old and new key roots so that they can migrate their non-CEN keys and values.

Parameters HKEY hKey
Handle to a currently open key, or one of the predefined handles.

The key opened or created by this function is a subkey of the key identified by this parameter.

LPSTR IpszSubKey
Pointer to a null-terminated string containing the name of'the key to be created or opened.

PHKEY phkResult
Pointer to a variable that receives the handle of the created or opened key.

LPDWORD IpdwDisposition
Pointer to a variable thatreceives one of the disposition values:
WFS_CFG_CREATED_NEW_KEY
WFS_CFG_OPENED_EXISTING_KEY

Comments If this function creates a new key, it has no values. The WFMSetValue functionis used to create
values.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR _CFG_INVALID_HKEY
The specified #Key parameter does not correspond to a currently open key.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

113

CWA 16926-1:2015 (E)

8.3 WFMDeleteKey

HRESULT

WFMDeleteKey (hKey, IpszSubKey)

Deletes the specified key. This function cannot delete a key that has subkeys.

Parameters

Comments

Error Codes

114

HKEY hKey
Handle to a currently open key, or one of the predefined handles.

The key specified by the IpszSubKey parameter must be a subkey of the key identified by this
parameter.

LPSTR IpszSubKey
Pointer to a null-terminated string specifying the name of the key to be deleted.

If this function succeeds, the specified key is removed from the configuration information. The
entire key, including all its values, is removed.

If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CFG_INVALID_HKEY
The specified #Key parameter does not correspond to a currently open key.

WFS_ERR_CFG_INVALID_SUBKEY
The key specified by IpszSubKey does not exist.

WFS_ERR_CFG_KEY_NOT_EMPTY
The specified key has subkeys and cannot be deleted. The subkeys must be deleted first.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

CWA 16926-1:2015 (E)

8.4 WFMDeleteValue

HRESULT

WFMDeleteValue (hKey, IpszValue)

Deletes the specified value (both name and data).

Parameters

Comments

Error Codes

HKEY hKey
Handle to a currently open key, or one of the predefined handles.

LPSTR IpszValue
Pointer to a null-terminated string specifying the name of'the value to be deleted.

The specified value is removed from the specified open key. The WFMSetValue function is used
to create or modify values.
If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CFG_INVALID_HKEY
The specified #Key parameter does not correspond to a currently open key.

WFS_ERR _CFG_INVALID_VALUE
The specified value does not exist within the specified open key.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

115

CWA 16926-1:2015 (E)

8.5 WFMEnumKey

HRESULT

WFMEnumKey (hKey, iSubKey, IpszName, IpcchName, IpftLastWrite)

Enumerates the subkeys of the specified open key. Retrieves information about one subkey each time it is called.

Parameters

Comments

Error Codes

116

HKEY hKey
Handle to a currently open key, or one of the predefined handles.

The keys enumerated by this function are subkeys of the key identified by this parameter.

DWORD iSubKey
The index ofthe subkey to retrieve. This parameter should be zero for the first call to this
function, then incremented for each subsequent call, in order to enumerate all the subkeys of
the specified open key.

Because subkeys are not ordered, any new subkey will have an arbitrary index. This means that
the function may return subkeys in any order.

LPSTR IpszName
Pointer to a buffer thatreceives the name of the subkey, including the terminating null
character.

LPDWORD IpcchName
Pointer to a variable that specifies the size, in characters, of the buffer specified by the
IpszName parameter, including the terminating null character. When the function returns, this
variable contains the number of characters actually stored in the buffer, not including the

terminating null character.
PFILETIME |[pftLastWrite

Pointer to a variable thatreceives the time the enumerated subkey was last written to, in the
form of a FILETIME structure (see Microsoft Win32 Programmer's Reference, Vol. 5):

typedef struct _FILETIME {
DWORD dwLowDateTime;
DWORD dwHighDateTime;
} FILETIME;

While a program is using this function iteratively, it should not call any other configuration
functions that would change the key being enumerated.

If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CFG_INVALID_HKEY
The specified #Key parameter does not correspond to a currently open key.

WFS_ERR_CFG_NO_MORE_ITEMS
There are no more subkeys to bereturned (the iSubKey parameter is greater than the index of

the last subkey).

WFS_ERR _CFG_NAME_TOO_LONG
The length of the name to be returned exceeds the length of the buffer.

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

CWA 16926-1:2015 (E)

8.6 WFMEnumValue

HRESULT

WFMEnumValue (hKey, iValue, IpszValue, IpcchValue, IpszData, IpcchData)

Enumerates the values of the specified open key. Retrieves the name and data for one value each time it is called.

Parameters

Comments

Error Codes

HKEY hKey
Handle to a currently open key, or one of the predefined handles.

The value enumerated by this function is a value of the key identified by this parameter.

DWORD /Value
The index ofthe value to retrieve. This parameter should be zero for the first call to this
function, then incremented for each subsequent call, in order to enumerate all the values of the
specified open key.

Because values are not ordered, any new value will have an arbitrary index. This means that the
function may return values in any order.

LPSTR IpszValue
Pointer to a buffer that receives the name of the value, including the terminating null character.

LPDWORD IpcchValue
Pointer to a variable that specifies the size, in characters, of the buffer pointed to by the

IpszValue parameter. This size should include the terminating null character. When the function
returns, this variable contains the the number of characters actually stored in the buffer, not

including the terminating null character.

LPSTR IpszData
Pointer to a buffer thatreceives the data for the value entry, including the terminating null
character. This parameter can be NULL, if the data is not required.

LPDWORD IpcchData
Pointer to a variable that specifies the size, in characters, of the buffer pointed to by the
IpszData parameter, including the terminating null character. When the function returns, this
variable contains the the number of characters actually stored in the buffer, not including the
terminating null character. Ignored if IpszData is NULL.

While a program is using this function iteratively, it should not call any other configuration
functions that would change the key being queried.

If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CFG_INVALID_HKEY
The specified #1Key parameter does not correspond to a currently open key.

WFS_ERR_CFG_NO_MORE_ITEMS
There are no more values to be returned (the i Value parameter is greater than the index of the
last value).

WFS_ERR_CFG_NAME_TOO_LONG
The length of the name to be returned exceeds the length of the buffer.

WFS_ERR_CFG_VALUE_TOO_LONG
The length of the value to be returned exceeds the length of the buffer.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

117

CWA 16926-1:2015 (E)

8.7 WFMOpenKey

HRESULT

WFMOpenKey (hKey, IpszSubKey, phkResult)

Opens the specified key.

Parameters

Comments

Error Codes

118

HKEY hKey
Handle to a currently open key, or one of the predefined handles.

The key opened by this function is a subkey of the key identified by this parameter.

LPSTR IpszSubKey
Pointer to a null-terminated string containing the name of'the key to be opened. If this
parameter is NULL, or points to an empty string, the function opens anotherhandle to the key
identified by the #Key parameter (and does not close any previously opened handles).

PHKEY phkResult
Pointer to a variable that receives the handle of the opened key.

In contrast with the WFMCreate Key function, this function does not create the specified key if it
does not exist.

If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR _CFG_INVALID_HKEY
The specified #Key parameter does not correspond to a currently open key.

WFS_ERR_CFG_INVALID_SUBKEY
The key specified by IpszSubKey does not exist.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

CWA 16926-1:2015 (E)

8.8 WFMAQueryValue

HRESULT

WFMQueryValue (hKey, IpszValueName, IpszData, IpcchData)

Retrieves the data for the value with the specified name, within the specified open key.

Parameters

Comments

Error Codes

HKEY hKey
Handle to a currently open key, or one of the predefined handles.

The value data returned is within the key identified by this parameter.

LPSTR IpszValueName
Pointer to a null-terminated string containing the name of'the value being queried.

LPSTR IpszData
Pointer to a buffer thatreceives the data for the value entry, including the terminating null

character.

LPDWORD /pcchData
Pointer to a variable that specifies the size, in characters, of the buffer pointed to by the

IpszData parameter, including the terminating null character. When the function returns, this
variable contains the number of characters actually stored in the buffer, not including the

terminating null character.

None.

If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CFG_INVALID_HKEY
The specified #Key parameter does not correspond to a currently open key.

WFS_ERR_CFG_INVALID_NAME

The value specified by the IpszValueName parameter does not exist in the specified key.

WFS_ERR _CFG_VALUE_TOO_LONG
The length of the value to be returned exceeds the length of the buffer.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

119

CWA 16926-1:2015 (E)

8.9 WFMSetValue

HRESULT WFMSetValue (hKey, IpszValueName, IpszData, cchData)

Stores datain the specified value of the specified key. If the value does not exist, it is created.

Parameters HKEY hKey
Handle to a currently open key, or one of the predefined handles.

The value set or created is within the key identified by this parameter.

LPSTR IpszValueName
Pointer to a null-terminated string containing the name of'the value being set. If a value with
this name does not already exist in the specified key, it is added to the key.

LPSTR IpszData
Pointer to a buffer containing the data (a null-terminated character string) to be stored with the
specified value name.

DWORD cchData
The size, in characters, of the string pointed to by the IpszData parameter, including the
terminating null character.

Comments Value lengths are limited by available memory. Long values (more than 2048 bytes)should be
stored as files with the filenames stored in the configuration information.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CFG_INVALID_HKEY
The specified #Key parameter does not correspond to a currently open key.

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

120

CWA 16926-1:2015 (E)

9. Data Structures

9.1 WFSRESULT

This structure has three functions:

e Itis the parameter which returns the results of the synchronous WFSLock, WFSExecute and WFS GetInfo
commands.

e Itis pointedto by all command completion messages,and delivers completion status (as a result handle) and
results data (if any) for all asynchronous APIand SPI calls.

e Itis pointed to by all event notification messages to deliver their contents.

Note that even though in many cases one or more members ofthis structure are not used, the adoption of a single,
standard structure for request results simplifies the implementation and maintenance of applications, Service
Providers and the XFS Manageritself.

typedef struct _wfs_result {
REQUESTID RequestID;
HSERVICE hService;
TIMESTAMP tsTimestamp;

HRESULT hResult;
union {
DWORD dwCommandCode;
DWORD dwEventID;
Tou

LPVOID 1pBuffer;
} WFSRESULT, *LPWFSRESULT;

The members of this structure are:

Field Description

RequestID RequestID ofthe completed command; not used for event notifications otherthan Execute
events.

hService Service handle identifying the session that created the result, i.e. the service handle of the
session thatthe eventis sentto.

tsTimestamp Time the eventoccurred (local time, in a Win32/Win64 SYSTEMTIME structure).

hResult Result handle (note that for synchronous WFSExecute and WFS GetInfo commands, this

value is identical to the synchronous function return value).

u.dwCommandCode ~ WFSExecute “command” code or WEFSGetInfo “category” code; not used for other
command completions.

u.dwEventID ID of the event (for unsolicited events).

IpBuffer Pointer to the results of the command (if any) or the contents of the event notification.

121

CWA 16926-1:2015 (E)

9.2 WFSVERSION

This structure is used to return version information from WFSStartUp, WEFSOpen and WFPOpen.

typedef struct _wfsversion {

WORD
WORD
WORD
char
char
} WFSVERSION,

wVersion;

wLowVersion;

wHighVersion;

szDescription[WFSDDESCRIPTION_LEN+1];
szSystemStatus [WFSDSYSSTATUS _LEN+1];
*LPWFSVERSION;

The members of this structure are (note that this structureis used to report version information for three distinct
XFS interfaces: APIL, SPIL, and the service-specific interface):

Element Usage

wVersion The version number to be used.

wLowVersion The lowest version number that the called DLL can suppott.

wHighVersion The highest version number that the called DLL can support.

szDescription A null-terminated ASCII string into which the called DLL copies a description of the
implementation. The text (up to 256 characters in length) may contain any characters: the
most likely usethatan application will make of this is to display it (possibly truncated) in a
status message.

szSystemStatus A null-terminated ASCII string into which the called DLL copies relevant status or

122

configuration information. Not to be considered as an extension of the szDescription field.
Used only if the information might be useful to the useror support staff.

10.Messages

CWA 16926-1:2015 (E)

This section defines the Windows messages used in the XFS subsystem.

10.1 Command Completions and Events

The following messages are sent to indicate:

o the completion of an asynchronous command, or

° the occurrence of an unsolicited event (execute, service, user, or systemevents).

All these messages have the same definition:
wParam: notused
[Param: points to a WFSRESULT data structure

WFS_<message_name>
wParam; /* not used */
1Param = LPWFSRESULT lpWFSResult;

10.1.1 Command Completion Messages
WFS_OPEN_COMPLETE
WFS_CLOSE_COMPLETE
WFS_LOCK_COMPLETE
WFS_UNLOCK_COMPLETE
WFS_REGISTER_COMPLETE
WFS_DEREGISTER_COMPLETE
WFS_GETINFO_COMPLETE
WFS_EXECUTE_COMPLETE

10.1.2 Event Messages
WFS_EXECUTE_EVENT
WFS_SERVICE_EVENT
WFS_USER_EVENT
WFS_SYSTEM_EVENT

The hService parameter of the WFSRESULT structure, in the above event messages, contains the service handle of

the session that the eventis sentto.

123

CWA 16926-1:2015 (E)

10.2 WFS_TIMER_EVENT

The timer event message has the following format (see WFMSetTimer, WFMKillTimer):

WFS_TIMER_EVENT

wParam = wTimerID; /* timer ID returned by the WFMSetTimer function */

1Param = 1pContext; /* context pointer supplied by the Service Provider */
/* that requested the timer; may be NULL */

124

CWA 16926-1:2015 (E)

10.3 WFS_SYSE_DEVICE_STATUS

Status changes of logical services (which typically reflect changes in physical devices) are reported as system
events. This is in addition to being reported by the WFS_INF xxx STATUS query of the WFSGetlnfo or
WEFSAsyncGetInfo functions. The WFSRESULT data structure (defined in Section 9.1) is utilized as follows:

Field Description
RequestID (not used)
hService Service handle identifying the session that created the result, i.e. the service handle of the
session thatthe eventis sentto.
tsTimestamp Time the status change occurred (local time, in a Win32/Win64 SYSTEMTIME structure).
hResult (not used)
u.dwEventID = WFS SYSE DEVICE STATUS
IpBuffer Pointer to a WFSDEVSTATUS structure:
typedef struct _wfs_devstatus {
LPSTR 1pszPhysicalName;
LPSTR lpszWorkstationName;
DWORD dwState;

} WFSDEVSTATUS, *LPWFSDEVSTATUS;

The members of this structure are:

Field Description

IpszPhysicalName Pointer to the physical service name of the service that changed its state.

IpszWorkstationName Pointer to the name of the workstation in which the logical service name is defined.

dwState Specifies the new state of the physical device managed by the service as one of the
following:

Value Meaning

WFS_STAT DEVONLINE The device is online (i.e. powered on and
operable).

WFS_STAT DEVOFFLINE The device is offline (e.g. the operator has taken
the device offline by turning a switch).

WEFS STAT DEVPOWEROFF The device is powered off or physically not
connected.

WEFS STAT DEVNODEVICE There is no device intended to be there; e.g. this
type of self service machine does notcontain
such a device or it is internally not configured.

WFS STAT DEVHWERROR The device is inoperable due to a hardware
error.

WEFS STAT DEVUSERERROR The device is inoperable becausea person is
preventing proper device operation.

WFS _STAT DEVFRAUDATTEMPT Some devices are capable of identifying a

malicious physical attack which attempts to
defraud valuable information or media. In this
circumstance, this status code is returned to
indicate the device is inoperable because a
person attempted a fraudulent act on the device.
WFS_STAT_DEVPOTENTIALFRAUD The device has detected a potential fraud
attempt and is capable of remaining in service.
In this case the application should make the
decision as to whether to take the device offline.

125

CWA 16926-1:2015 (E)

10.4 WFS_SYSE_UNDELIVERABLE_MSG

If a command completion or event message cannotbe delivered, it is reported as a systemevent. The WFSRESULT
data structure (defined in Section 9.1) is utilized as follows:

Field Description
RequestID (not used)
hService Service handle identifying the session thatthe eventis sent to.
tsTimestamp Time the eventoccurred (local time, in a Win32/Win64 SYSTEMTIME structure).
hResult (not used)
u.dwEventID = WFS_SYSE UNDELIVERABLE MSG
IpBuffer Pointer to a WFSUNDEVMSG structure:
typedef struct _wfs_undevmsg {
LPSTR lpszLogicalName;
LPSTR lpszWorkstationName;
LPSTR 1pszAppID;
DWORD dwSize;
LPBYTE lpbDescription;
DWORD dwMsg;

LPWFSRESULT 1pWFSResult;
} WFSUNDEVMSG, *LPWFSUNDEVMSG;

The members of this structure are:

Field Description

IpszLogicalName Pointer to the logical service name of the service that generated the original undeliverable
message.

IpszWorkstationName Pointer to the name of the workstation in which the logical service name is defined.

IpszAppID Pointer to the application ID associated with the session that generated the original
message.

dwSize The size in bytes of the following description.

IpbDescription Pointer to a vendor-specific description of the reason why the message could not be
delivered.

dwMsg The message identifier of the original message.

IpWFSResult Pointer to the WFSRESULT structure of the original message (which has the /pBuffer

parameter setto NULL). This structure includes the 2Service of the session where the
message could not be delivered.

126

CWA 16926-1:2015 (E)

10.5 WFS_SYSE_APP_DISCONNECT

If the XFS subsystemloses connection to an application, it closes the session (see Section 4.6) and generates this
systemevent. The WFSRESULT data structure (defined in Section 9.1) is utilized as follows:

Field Description
RequestID (not used)
hService Service handle identifying the session thatthe eventis sentto.
tsTimestamp Time the eventoccurred (local time, in a Win32/Win64 SYSTEMTIME structure).
hResult (not used)
u.dwEventID = WFS_SYSE APP_DISCONNECT
IpBuffer Pointer to a WFSAPPDISC structure:
typedef struct _wfs_appdisc {
LPSTR lpszLogicalName;
LPSTR lpszWorkstationName;
LPSTR 1pszAppID;

} WFSAPPDISC, *LPWFSAPPDISC;

The members of this structure are:

Field Description

IpszLogicalName Pointer to the logical service name of the service that the application was connected to.
IpszWorkstationName Pointer to the name of the workstation in which the logical service name is defined.
IpszAppID Pointer to the application ID associated with the session that generated the event.

127

CWA 16926-1:2015 (E)

10.6 WFS_SYSE_HARDWARE_ERROR, WFS_SYSE_SOFTWARE_ERROR,
WFS_SYSE_USER_ERROR and WFS_SYSE_FRAUD_ATTEMPT

Hardware and software errors are reported as systemevents. In most cases, this is in addition to being reported via
the WFS_ERR_HARDWARE ERROR (or device class specific error code), the

WFS ERR SOFTWARE ERROR or WFS_ERR USER ERROR error code thatis returned as the command
completion.

In order to supply the maximum information, these events should be sent as soon as an error is detected. In
particular, if an error is detected during the processing of an execute command, then the event should be sent before
the command completion event.

The WFSRESULT data structure (defined in Section 9.1), is utilized as follows:

Field Description

RequestID Request ID ofthe request being processed when the error occurred, zero if no request was
being processed when the error occurred.

hService Service handle identifying the session thattheeventis sentto.

tsTimestamp Time the error occurred (local time, in a Win32/Win64 SYSTEMTIME structure).

hResult Result handle of the request being processed when the error occurred, zero if no request
was being processed.

u.dwEventID The ID of the error.
Value Meaning

WFS SYSE HARDWARE ERROR The error is a hardware error

WFS_SYSE SOFTWARE ERROR The error is a software error

WFS_SYSE USER ERROR The error is a usererror

WEFS_SYSE FRAUD ATTEMPT Some devices are capable of identifying a
malicious physical attack which attempts to
defraud valuable information or media. In this
circumstance, this error eventis returned to
indicate a fraud attempt has occurred.

IpBuffer Pointer to a WFSHWERROR structure:
typedef struct _wfs_hwerror {
LPSTR lpszLogicalName;
LPSTR 1pszPhysicalName;
LPSTR lpszWorkstationName;
LPSTR 1pszAppID;
DWORD dwAction;
DWORD dwSize;
LPBYTE lpbDescription;

} WFSHWERROR, *LPWFSHWERROR;

The members of this structure are:

Field Description
IpszLogicalName Pointer to the logical service name of the service that generated the error
IpszPhysicalName Pointer to the physical service name of the service that generated the error
IpszWorkstationName Pointer to the name of the workstation in which the logical service name is defined (if any)
IpszAppID Pointer to the application ID associated with the session that generated the error (if any)
dwAction The action required to manage the error. Possible values are:
Value Meaning
WFS_ERR ACT NOACTION No action required or error was autorecovered.
WFS_ERR ACT RESET Reset device to attempt recovery.
WFS _ERR _ACT _SWERROR A software error occurred. Contact software
vendor.
WFS ERR ACT CONFIG A configuration error occurred. Check
configuration.
WFS_ERR ACT_HWCLEAR Recovery is not possible. A manual intervention

for clearing the device is required. This value is
only used for hardware errors. This value is

128

CWA 16926-1:2015 (E)

typically returned when a hardware error has
occurred which requires banking personnel
specific maintenance, e.g. ‘replace paper’, or
‘remove cards from retain bin’.

WFS_ERR ACT_HWMAINT Recovery is notpossible. A technical
maintenance intervention is required. This value
is only used for hardware errors and fraud
attempts. This value is typically returned when a
hardware error or fraud attempt has occurred
which requires field engineer specific
maintenance activity.

WFS_ERR ACT SUSPEND Device will attempt auto recovery and will
advise any further action required via a Device
Status Event.

dwSize The size in bytes of the following description
IpbDescription Pointer to a vendor-specific description of the error.
Note:

The following table describes what dwAction may be returned for the various Hardware, Software, User Error and
Fraud Attempt Events:

Generated on Generated on Software | Generated on User Generated on Fraud
Hardware Event? Event? Event? Event?
_NOACTION Yes Yes Yes Yes
_RESET Yes Yes Yes No
~ SWERROR No Yes No No
_CONFIG Yes Yes No No
_HWCLEAR Yes No No No
~ HWMAINT Yes No No Yes
_SUSPEND No No Yes No

129

CWA 16926-1:2015 (E)

10.7 WFS_SYSE_LOCK_REQUESTED

The Lock requested systemeventis sentto any application which currently has a device locked whenever a request
for a lock on the same device is received from anotherapplication or service handle. Note that this eventis
generated each time anotherapplication requests alock on the same device. This system event differs from other
systemevents in thatit is only posted to the owner of the lock; it is NOT posted to any other application.

Field Description

RequestID (not used)

hService Service handle identifying the device and session which has obtained the lock.
tsTimestamp Time the status change occurred (local time, in a Win32/Win64 SYSTEMTIME structure).
hResult (not used)

u.dwEventID = WFS _SYSE LOCK REQUESTED

IpBuffer (not used)

130

CWA 16926-1:2015 (E)

10.8 WFS_SYSE_VERSION_ERROR

Failures in version negotiation are reported as systemevents. This is in addition to being reported by the version
error code returned by the WESStartUp or WFSOpen functions. The WFSRESULT data structure (defined in
Section 9.1) is utilized as follows:

Field Description
RequestID (not used)
hService (not used)
tsTimestamp Time the error occurred (local time, in a Win32/Win64 SYSTEMTIME structure).
hResult The version error code (e.g. WFS_ERR SPI VER TOO_HIGH).
u.dwEventID = WFS _SYSE VERSION ERROR
IpBuffer Pointer to a WFSVRSNERROR structure:
typedef struct _wfs_vrsnerror {
LPSTR lpszLogicalName;
LPSTR lpszWorkstationName;
LPSTR 1pszAppID;
DWORD dwSize;
LPBYTE lpbDescription;
LPWFSVERSION 1pWFSVersion;

} WFSVRSNERROR, *LPWFSVRSNERROR

The members of this structure are:

Field Description

IpszLogicalName Pointer to the logical service name of the service being opened (NULL if WFSStartUp).

IpszWorkstationName Pointer to the name of the workstation in which the application made the WFSStartUp or
WEFSOpen request.

IpszAppID Pointer to the application ID from the open request that failed (NULL if WEFSStartUp).

dwSize The size in bytes of the following description.

IpbDescription Pointer to a vendor-specific description of the version negotiation failure.

IpWFSVersion Pointer to the WFSVERSION structure reporting the results of the version negotiation.

131

CWA 16926-1:2015 (E)

11.Error Codes

The following are the error codes that can be returned from a call to an XFS API or SPI function, either as a
function return or in a result structure pointed to by a completion message. Errors from service-specific commands
are defined in the specifications for each service class.

WFS_ERR_ALREADY_STARTED
A WFSStartUp has already been issued by the application, without an intervening WES CleanUp.

WFS_ERR_API_VER TOO_HIGH
The range of versions of XFS API support requested by the application is higher than any supported by this
particular XFS Manager implementation.

WFS_ERR_API_VER TOO_LOW
The range of versions of XFS API support requested by the application is lower than any supported by this
particular XFS Manager implementation.

WFS_ERR_CANCELED
The request was canceled by WEFSCancelAsyncRequest or WFS CancelBlockingCall.

WFS_ERR_CFG_INVALID_HKEY
The specified #Key parameter does not correspond to a currently open key.

WFS_ERR_CFG_INVALID_NAME

The value specified by the IpszValueName parameter does notexist in the specified key.

WFS_ERR_CFG_INVALID_SUBKEY
The key specified by /pszSubKey does not exist.

WFS_ERR_CFG_INVALID_VALUE
The specified value does not exist within the specified open key.

WFS_ERR_CFG_KEY_NOT_EMPTY
The specified key has subkeys and cannot be deleted. The subkeys must be deleted first.

WFS_ERR_CFG_NAME_TOO_LONG
The length of the name to be returned exceeds the length of the buffer.

WFS_ERR _CFG_NO_MORE_ITEMS
There are no more subkeys to be returned (the iSubKey parameter is greater than the index of the last subkey).

WFS_ERR_CFG_VALUE_TOO_LONG
The length of the value to be returned exceeds the length of the buffer.

WFS_ERR _CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_DEV_NOT_READY
The function required device access, and the device was notready or timed out.

WFS_ERR_HARDWARE_ERROR
The function required device access, and an error occurred on the device.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency orother unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_ADDRESS

The IpvOriginal parameter does not point to a previously allocated buffer.

WFS_ERR_INVALID_APP_HANDLE

The specified application handle is not valid, i.e. was not created by a preceding create call.

WFS_ERR_INVALID_BUFFER
The IpvData parameter is not a pointer to an allocated buffer structure.

WFS_ERR_INVALID_CATEGORY
The dwCategory issued is not supported by this service class.

132

CWA 16926-1:2015 (E)

WFS_ERR_INVALID_COMMAND
The dwCommand issued is not supported by this service class.

WFS_ERR_INVALID_EVENT_CLASS
The dwEventClass parameter specifies one or more event classes not supported by the service.

WFS_ERR_INVALID_HSERVICE
The AhService parameter is not a valid service handle.

WFS_ERR_INVALID_HPROVIDER
The hProvider parameter is not a valid provider handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_HWNDREG
The hWndReg parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_INVALID_DATA
The data structure passed as input parameter contains invalid data.

WFS_ERR_INVALID_REQ_ID
The RequestID parameter does not correspond to an outstanding request on the service.

WFS_ERR_INVALID_RESULT
The IpResult parameter is nota pointer to an allocated WFSRESULT structure.

WFS_ERR_INVALID_SERVPROV
The file containing the Service Provider is invalid or corrupted.

WFS_ERR_INVALID_TIMER
The hWnd and wTimerID parameters do not correspond to a currently active timer.

WFS_ERR_INVALID_TRACELEVEL
The dwTraceLevel parameter does not correspond to a valid trace level or set of levels.

WFS_ERR _LOCKED
The service is locked under a different AService.

WFS_ERR_NO_BLOCKING_CALL
There is no outstanding blocking call for the specified thread.

WFS_ERR_NO_SERVPROV
The file containing the Service Provider does not exist.

WFS_ERR _NO_SUCH_THREAD
The specified thread does not exist.

WFS_ERR NO_TIMER
The timer could notbe created.

WFS_ERR _NOT_LOCKED
The application requesting a service be unlocked had not previously performed a successful WFSLock or
WES AsyncLock.

WFS_ERR_NOT_OK_TO_UNLOAD
The XFS Manager may notunload the Service Provider DLL.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_NOT_REGISTERED
The specified 2WndReg window was not registered to receive messages for any event classes.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFS CancelBlockingCall and WESIsBlocking are
permitted at this time.

WFS_ERR_OUT_OF_MEMORY
There is not enough memory available to satisfy the request.

133

CWA 16926-1:2015 (E)

WFS_ERR_SERVICE_NOT_FOUND
The logical name is not a valid Service Provider name.

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occurred on the software.

WFS_ERR_SPI_VER_TOO_HIGH
The range of versions of XFS SPI supportrequested by the XFS Manager is higher than any supported by the
Service Provider for the logical service being opened.

WFS_ERR_SPI_VER_TOO_LOW
The range of versions of XFS SPI support requested by the XFS Manager is lower than any supported by the
Service Provider for the logical service being opened.

WFS_ERR_SRVC_VER_TOO_HIGH
The range of versions of the service-specific interface support requested by the application is higher than any
supported by the Service Provider for the logical service being opened.

WFS_ERR_SRVC_VER TOO_LOW
The range of versions of the service-specific interface support requested by the application is lower than any
supported by the Service Provider for the logical service being opened.

WFS_ERR_TIMEOUT
The timeout interval expired.

WFS_ERR_UNSUPP_CATEGORY
The dwCategory issued,although valid for this service class, is not supported by this Service Provider.

WFS_ERR_UNSUPP_COMMAND
The dwCommand issued, although valid for this service class, is not supported by this Service Provider or device.

WFS_ERR_UNSUPP_DATA
The data structure passed as an input parameter although valid for this service class is not supported by this Service
Provider or device.

WFS_ERR_USER_ERROR
A user is preventing proper operation of the device.

WFS_ERR _VERSION_ERROR_IN_SRVC
Within the service, a version mismatch of two modules occurred.

WFS_ERR_FRAUD_ATTEMPT
Some devices are capable of identifying a malicious physicalattack which attempts to defraud valuable information
or media. In these cases, this error code is returned to indicate the user is attempting a fraudulent act on the device.

WFS_ERR_SEQUENCE_ERROR
The requested operation is not valid at this time or in the devices current state.

WFS_ERR_AUTH_REQUIRED

The requested operation cannot be performed because it requires authentication.

134

CWA 16926-1:2015 (E)

12. Appendix A - Planned Enhancements and Extensions

This section describes functions and facilities that are not fully defined in this version of the Extensions for
Financial Services specification; modifications and complete definitions will be supplied in later versions. Vendor
and userinput is encouraged on these functions and facilities, as well as suggestions as to additional functionality.

XFS currently includes specifications for access to the key classes of financial peripherals for attended and self-
service environments. These existing specifications will be extended and enhanced based on vendorand user
experience with them. The Service Class Definition Document lists the classes of devices or services that, together
with others that customers and vendors request, will be evaluated for inclusion in future versions of this
specification.

Also to be considered for future versions of XFS are other types of services,such as financial transaction messaging
and management, as well as related services for financial networks such as network and systems management and
security. As with the current specification, all these capabilities will be specified for access from the familiar,
consistent Microsoft Windows user interface and programming environments. Another portion of the XFS API set
will deal with administration issues.

135

CWA 16926-1:2015 (E)

12.1 Event and System Management

The XFS subsystemwill need additional facilities for managing exception conditions (i.e. those thatare not
anticipated in the error codes, events, etc., that are defined in this specification). One general facility for this is the
systemevent capability, as described in Sections 4.11 and 10. This will utilize a combination of one or more
functions provided by the XFS Manager and other methods for applications, the XFS Manager, Service Providers,
and services to report exception conditions in special circumstances (e.g. when the XFS Manageris not available).
Such conditions would presumably be monitored by a system management agent responsible for logging and
reporting them via a network management facility.

136

CWA 16926-1:2015 (E)

13.Appendix B - XFS Workshop Contacts

Please submit comments and questions to
xfs-helpdesk@cenorm.be

Or contact

Luc Van den Berghe

CEN Workshop Manager

Rue de Stassart 36

B-1050 Brussels
Luc.vandenberghe@cenorm.be
Tel: + 322 55 00 957

137

mailto:xfs-helpdesk@cenorm.be

CWA 16926-1:2015 (E)

14. Appendix C - ATM Devices Synchronization Flow

The following section describes the flow of a synchronization use case using
WFS CMD XXX SYNCHRONIZE COMMAND. This application flow is provided as a guideline only.

14.1 Synchronized Media Ejection

The following table describes the flow of a transaction where the receipt ejection is synchronized with the card
ejection during the transaction. Both Service Providers and the devices support the synchronization in this example.

Step

Application/XFS Commands

Service Providers /
Devices

The ne

xt step is to eject the receipt and the card at the end of the transaction. The applic
synchronize the receipt ejection with the card ejection.

ation would like to

L.

Informs the PTR class Service Provider that the subsequent command is the
“eject receipt” and that this command needs to be executed without delay for
synchronization purposes.

WFS_CMD PTR SYNCHRONIZE COMMAND (dwCommand:
WFS _CMD PTR CONTROL MEDIA) (specifying
WFS_PTR _CTRLEJECT as its parameter)

PTR class Service
Provider sends a
synchronization command
to the receipt printer
device for the receipt
ejection.

WFS CMD IDC EJECT CARD completion event.

2. Informs the IDC class Service Provider that the subsequent command is the IDC class Service
“eject card” and that this command needs to be executed without delay for Provider sends a
synchronization purposes. synchronization command

to the card reader device

WFS CMD_IDC SYNCHRONIZE COMMAND (dwCommand: for the card ejection.
WEFS CMD IDC EJECT CARD) (specifying WFS_IDC EXITPOSITION
as its parameter)

3. WEFS_CMD_PTR SYNCHRONIZE COMMAND completion event.
WFS CMD IDC SYNCHRONIZE COMMAND completion event.

4. The application executes the following commands at the same time. The following actions are
- Initiates via a WFSAsyncExecute WFS_ CMD_PTR CONTROL MEDIA. performed at the same
- Initiates via a WFSAsyncExecute WFS_ CMD IDC EJECT CARD. time.
(The parameters are the same as specified in the - The receipt is ejected.
WFS _CMD_ XXX SYNCHRONIZATION COMMANDs) - The card is ejected.

5. WFS_CMD PTR CONTROL MEDIA completion event.

138

CWA 16926-1:2015 (E)

15.Appendix D — Win64 Migration Considerations

Users must ensure that when porting their XFS applications to the Win64 environment that care is taken to
update their existing code correctly in order to avoid issues. Microsoft state that porting 32-bit applications
to 64-bit will be easier than it was porting 16-bit applications to 32-bit Windows, but care must still be
taken in certain areas.

On 64 bit operating systems it is possible to run either a complete 32 bit XFS software stack, or a complete
64 bit software stack. Where a native 64 bit application is being run a 64 bit XFS Managermust be used.
A sample XFS Manager is supplied with the XFS SDK, however this is a 32 bit XFS Manageronly.

By far the biggest change when migrating C code is the change in pointer size from 32 to 64 bits. As the
XFS architecture makes extensive use of pointers this change may have a significant impact on native XFS
applications that currently run on Win32 environments. The following are some considerations for
developers with regard to the XFS architecture:

1. As it is impossible for a 64-bit process to load a 32-bit DLL directly it is recommended thatthe
entire software stack from the the application to the Service Providers should be native 64-bit where
possible. While this is the most ideal solution it is not mandatory but a recommendation, as feasibly
some dependencies could run out of process to the application and/orthe Service Providers. The XFS
Manager thatis used will always need to be 64-bit for a 64-bit application.

2. All declarations, use and storage of pointers should be checked. In C code memory addresses are
often stored as a ULONG value, because on 32-bit Windows an address, a pointer, and a ULONG are
all 32 bits. On 64-bit Windows a ULONG is also 32 bits long, butall pointers are 64-bit values.
Functions such as the C sizeof() method will alsoneed to be checked as the value that they return for
the size of a pointer will be 8 bytes ratherthan 4 bytes. C style casts will also need to be scrutinized as
potentially they may casta pointer to a 32 bit value.

3. In order to prepare for the possibilityof future porting to 64-bit code, developers should consider
using the latest Windows header files that contain the portable pointer precision type ULONG PTR.
This data type can be used in current 32-bit code to store pointer values instead of a ULONG. The
ULONG PTR data typeis a portable value thatis 32 bits when compiled with a 32-bit compiler and
64 bits when compiled with a 64-bit compiler, thus ensuring good compatibility when compiled in
either environment.

4. If running a 32 bit application on a 64 bit operating systemthen the operating system may manage
the precise location of the XFS registry locations in 32 bit compatible areas of the registry.

139

CWA 16926-1:2015 (E)

16.Appendix D - C-Header files

16.1 XFSAPI.H

/****** R I I S S b I S I b R I S b b b S S b b b I S b b b I S S b S S S 2 R S S S S S S S S R I S b b b S S b 2

* *
* xfsapi.h XFS - API functions, types, and definitions *
* *
* Version 3.30 (March 19 2015) *
* *
KAKAKKAK A A KA AR KAAKR AR KA AA KR AF AR A AAAA A AT AR A AA AR AR AR R AL A A AAKN AR A AR A A A Kk K **/

#ifndef inc xfsapi h
#define inc xfsapi h

#ifdef _ cplusplus
extern "C" {
#endif

#include <windows .h>

/* be aware of alignment */
#pragma pack (push, 1)

/****** Common ** *Fx kK kkkkk khk kA X AX XXX XXX XK KX dhk kkkokok kokokokok kokokokk kokokok dkokokokok **/

typedef unsigned short USHORT;
typedef char CHAR;

typedef short SHORT;

typedef unsigned long ULONG;
typedef unsigned char UCHAR;
typedef SHORT * LPSHORT;
typedef LPVOID * LPLPVOID;
typedef ULONG * LPULONG;
typedef USHORT * LPUSHORT;

typedef HANDLE HPROVIDER;

typedef ULONG REQUESTID;
typedef REQUESTID * LPREQUESTID;

typedef HANDLE HAPP;
typedef HAPP * LPHAPP;

typedef USHORT HSERVICE;
typedef HSERVICE * LPHSERVICE;

typedef LONG HRESULT;
typedef HRESULT * LPHRESULT;

typedef BOOL (WINAPI * XFSBLOCKINGHOOK) (VOID);
typedef XFSBLOCKINGHOOK * LPXFSBLOCKINGHOOK;

/****** Strlng lengths **/

#define WFSDDESCRIPTION LEN 256
#define WFSDSYSSTATUS LEN 256

/****** Values Of WFSDEVSTATUS.fWState **k************‘k************‘k******/

#define WFS_STAT DEVONLINE
#define WFS_STAT DEVOFFLINE
#define WFS_STAT DEVPOWEROFF
#define WFS_STAT DEVNODEVICE
#define WFS_STAT DEVHWERROR
#define WFS_STAT DEVUSERERROR
#define WFS_STAT DEVBUSY

#define WFS_STAT DEVFRAUDATTEMPT

oUW PO

140

#define

/******

#define

/*****‘k

CWA 16926-1:2015 (E)

WES STAT DEVPOTENTIALFRAUD (8)
Value of WES DEFAULT HAPP X% %k xkok ok kokok kkkokok kkokokok kokokkk kokokk kokokkx ok ok /

WFS DEFAULT HAPP (0)

Data Structures **********‘k**************************************/

typedef struct wfs result
{
REQUESTID RequestID;
HSERVICE hService;
SYSTEMTIME tsTimestamp;
HRESULT hResult;
union {
DWORD dwCommandCode;
DWORD dwEventID;
}ous
LPVOID lpBuffer;
} WESRESULT, * LPWFSRESULT;
typedef struct wfsversion
{
WORD wVersion;
WORD wLowVersion;
WORD wHighVersion;
CHAR szDescription[WFSDDESCRIPTION LEN+1];
CHAR szSystemStatus[WFSDSYSSTATUS_EEN+1];
} WESVERSION, * LPWFSVERSION;

/****** Message Structures R R R R R R R S R I I S R R S I I S ***/

typedef struct wfs devstatus
{
LPSTR lpszPhysicalName;
LPSTR lpszWorkstationName;
DWORD dwState;
} WEFSDEVSTATUS, * LPWFSDEVSTATUS;
typedef struct wfs undevmsg
{
LPSTR lpszLogicalName;
LPSTR lpszWorkstationName;
LPSTR lpszAppID;
DWORD dwSize;
LPBYTE lpbDescription;
DWORD dwMsg;
LPWEFSRESULT 1pWFSResult;

} WESUNDEVMSG, * LPWEFSUNDEVMSG;

typedef struct wfs appdisc

{
LPSTR lpszLogicalName;
LPSTR lpszWorkstationName;
LPSTR lpszApplD;

} WESAPPDISC, * LPWEFSAPPDISC;

typedef struct wfs hwerror

{
LPSTR lpszLogicalName;
LPSTR lpszPhysicalName;
LPSTR lpszWorkstationName;
LPSTR lpszApplD;
DWORD dwAction;
DWORD dwSize;
LPBYTE lpbDescription;

} WESHWERROR, * LPWFSHWERROR;

typedef
{

struct wfs vrsnerror

LPSTR lpszLogicalName;

141

CWA 16926-1:2015 (E)

LPSTR lpszWorkstationName;
LPSTR lpszApplD;

DWORD dwSize;

LPBYTE lpbDescription;
LPWFSVERSION 1pWFSVersion;

} WESVRSNERROR, * LPWEFSVRSNERROR;

/****** Error codes **/

#define WFS_SUCCESS 0)

#define WFS ERR ALREADY STARTED -1)
#define WFS_ERR API VER TOO HIGH -2)
#define WFS_ERR API VER TOO_LOW -3)
#define WFS ERR CANCELED -4)
#define WFS_ERR CFG_INVALID HKEY -5)
#define WFS_ERR CFG INVALID NAME -6)
#define WFS ERR CFG INVALID SUBKEY -7)
#define WFS ERR CFG_INVALID VALUE -8)
#define WFS_ERR CFG _KEY NOT EMPTY -9)
#define WFS ERR CFG NAME TOO LONG -10)
#define WFS ERR CFG NO MORE ITEMS -11)
#define WFS_ERR CFG VALUE TOO LONG -12)
#define WFS_ERR DEV _NOT READY -13)
#define WFS_ERR HARDWARE ERROR -14)
#define WFS_ERR_INTERNAL ERROR -15)
#define WFS_ERR_INVALID ADDRESS -16)
#define WFS_ERR INVALID APP HANDLE -17)
#define WFS_ERR INVALID BUFFER -18)
#define WFS_ERR_INVALID CATEGORY -19)
#define WFS_ERR INVALID COMMAND -20)
#define WFS_ERR_INVALID EVENT CLASS -21)

#define WFS_ERR_INVALID HSERVICE
#define WFS_ERR_INVALID HPROVIDER
#define WFS_ERR INVALID HWND
#define WFS_ERR_INVALID HWNDREG
#define WFS_ERR_INVALID POINTER
#define WFS_ERR INVALID REQ ID
#define WFS_ERR_INVALID RESULT
#define WFS_ERR_INVALID SERVPROV
#define WFS_ERR INVALID TIMER
#define WFS_ERR_INVALID TRACELEVEL
#define WFS_ERR _LOCKED

#define WFS_ERR NO BLOCKING CALL
#define WFS_ERR NO SERVPROV
#define WFS_ERR NO SUCH THREAD
#define WFS_ERR NO TIMER

#define WFS ERR NOT LOCKED
#define WFS ERR NOT OK TO UNLOAD
#define WFS_ERR NOT STARTED
#define WFS _ERR NOT REGISTERED
#define WFS _ERR OP IN PROGRESS
#define WFS_ERR OUT OF MEMORY

|
BB DWW WWWwwWwwwwwdhhhNDNDDNDND NN

N N N e~~~ o~~~ o~~~ e~~~ o~~~ o~~~ o~~~ o~~~ o~~~ o~~~ o~~~ o~~~ o~ o~~~ o~~~ o~~~ o~ —~
|
NEFE O W -Jo U dWNEFE O WOWwJo) Uld WIN

#define WFS_ERR SERVICE _NOT_ FOUND -43)
#define WFS ERR SPI VER TOO HIGH -44)
#define WFS_ERR SPI VER TOO LOW -45)
#define WFS_ERR SRVC_VER TOO HIGH -46)
#define WFS_ERR SRVC VER TOO LOW -47)
#define WFS_ERR TIMEOUT -48)
#define WFS_ERR _UNSUPP_CATEGORY -49)
#define WFS_ERR _UNSUPP_COMMAND -50)
#define WFS_ERR VERSION ERROR IN SRVC -51)
#define WFS_ERR_INVALID DATA -52)
#define WFS_ERR SOFTWARE_ERROR -53)
#define WFS ERR CONNECTION LOST -54)
#define WFS_ERR USER ERROR -55)
#define WFS_ERR UNSUPP_DATA -56)
#define WFS_ERR FRAUD ATTEMPT -57)
#define WFS_ERR SEQUENCE ERROR -58)
#define WFS_ERR AUTH REQUIRED -59)

142

CWA 16926-1:2015 (E)

#define WFS_INDEFINITE WAIT 0

/****** Messages hhkkhkhkhkhkhkhhhkhkhkhkhkhkhkhrkhk hkkhkhhkhkhkhrkhkhkhkhkhkhkrx krxkhkhkx khkhkrxk xk*x%x ********/

/* Message-No = (WM _USER + No) */

#define WFS_OPEN COMPLETE (WM_USER + 1)
#define WFS_CLOSE_COMPLETE (WM_USER + 2)
#define WFS_ LOCK COMPLETE (WM_USER + 3)
#define WFS UNLOCK COMPLETE (WM_USER + 4)
#define WFS_REGISTER COMPLETE (WM_USER + 5)
#define WFS DEREGISTER COMPLETE (WM_USER + 6)
#define WFS GETINFO COMPLETE (WM_USER + 7)
#define WFS_EXECUTE COMPLETE (WM_USER + 8)
#define WFS EXECUTE_EVENT (WM_USER + 20)
#define WFS_SERVICE EVENT (WM_USER + 21)
#define WFS_USER_EVENT (WM_USER + 22)
#define WFS_SYSTEM EVENT (WM_USER + 23)
#define WFS_TIMER EVENT (WM_USER + 100)

/****** EFEvent Classes ***/

#define SERVICE EVENTS
#define USER_EVENTS
#define SYSTEM EVENTS

(
(
(
#define EXECUTE_EVENTS (

1)
2)
4)
8)
/****** System Event IDs **/

#define WFS_SYSE UNDELIVERABLE MSG
#define WFS_ SYSE HARDWARE ERROR
#define WFS_SYSE VERSION ERROR
#define WFS_SYSE DEVICE STATUS
#define WFS_SYSE APP DISCONNECT
#define WFS_ SYSE SOFTWARE ERROR
#define WFS_SYSE USER_ERROR
#define WFS_SYSE LOCK REQUESTED
#define WFS_SYSE FRAUD ATTEMPT

1
2
3
4
5
6
7
8
9

/****** XFS Trace Level **/

#define WFS_TRACE APT (0x00000001)
#define WFS_TRACE ALL API (0x00000002)
#define WFS_TRACE_SPI (0x00000004)
#define WFS_TRACE ALL_ SPT (0x00000008)
#define WFS_TRACE MGR (0x00000010)

/****** XFS Error ACthHS **/

#define WFS ERR ACT NOACTION 0x0000)
#define WFS_ERR ACT RESET 0x0001)
#define WFS_ERR _ACT SWERROR 0x0002)

(

(

(
#define WFS_ ERR ACT CONFIG (0x0004)

(

(

(

#define WFS_ERR ACT HWCLEAR 0x0008)
#define WFS_ERR ACT HWMAINT 0x0010)
#define WFS ERR ACT SUSPEND 0x0020)

/****** XFS SNMP MIB Category Codes **********************************/
/* NOTE: To support the XFS SNMP MIB, the WFSGet[Async]Info category codes between
60000 and 60999 are reserved.*/

/****** API functions ***/

HRESULT extern WINAPI WFSCancelAsyncRequest (HSERVICE hService, REQUESTID RequestID) ;

143

CWA 16926-1:2015 (E)

HRESULT extern WINAPI WFSCancelBlockingCall (DWORD dwThreadID);
HRESULT extern WINAPI WEFSCleanUp ();
HRESULT extern WINAPI WEFSClose (HSERVICE hService) ;

HRESULT extern WINAPI WFSAsyncClose (HSERVICE hService, HWND hWnd, LPREQUESTID
1lpRequestID) ;

HRESULT extern WINAPI WFSCreateAppHandle (LPHAPP lphApp);

HRESULT extern WINAPI WFSDeregister (HSERVICE hService, DWORD dwEventClass, HWND
hWndReqg) ;

HRESULT extern WINAPI WFSAsyncDeregister (HSERVICE hService, DWORD dwEventClass, HWND
hWndReg, HWND hWnd, LPREQUESTID lpRequestID);

HRESULT extern WINAPI WFSDestroyAppHandle (HAPP hApp);

HRESULT extern WINAPI WFSExecute (HSERVICE hService, DWORD dwCommand, LPVOID
lpCmdData, DWORD dwTimeOut, LPWFSRESULT * lppResult);

HRESULT extern WINAPI WFSAsyncExecute (HSERVICE hService, DWORD dwCommand, LPVOID
lpCmdData, DWORD dwTimeOut, HWND hWnd, LPREQUESTID lpRequestID);

HRESULT extern WINAPI WEFSFreeResult (LPWEFSRESULT lpResult);

HRESULT extern WINAPI WFSGetInfo (HSERVICE hService, DWORD dwCategory, LPVOID
lpQueryDetails, DWORD dwTimeOut, LPWFSRESULT * lppResult);

HRESULT extern WINAPI WFSAsyncGetInfo (HSERVICE hService, DWORD dwCategory, LPVOID
lpQueryDetails, DWORD dwTimeOut, HWND hWnd, LPREQUESTID lpRequestID);

BOOL extern WINAPI WFSIsBlocking ();

HRESULT extern WINAPI WFSLock (HSERVICE hService, DWORD dwTimeOut, LPWFSRESULT *
lppResult) ;

HRESULT extern WINAPI WEFSAsyncLock (HSERVICE hService, DWORD dwTimeOut, HWND hWnd,
LPREQUESTID lpRequestID);

HRESULT extern WINAPI WFSOpen (LPSTR lpszLogicalName, HAPP hApp, LPSTR lpszApplD,

DWORD dwTracelevel, DWORD dwTimeOut, DWORD dwSrvcVersionsRequired, LPWEFSVERSION
lpSrvcVersion, LPWEFSVERSION lpSPIVersion, LPHSERVICE lphService);

HRESULT extern WINAPI WFSAsyncOpen (LPSTR lpszLogicalName, HAPP hApp, LPSTR
lpszAppID, DWORD dwTraceLevel, DWORD dwTimeOut, LPHSERVICE lphService, HWND hWnd,
DWORD dwSrvcVersionsRequired, LPWEFSVERSION lpSrvcVersion, LPWEFSVERSION lpSPIVersion,
LPREQUESTID lpRequestID);

HRESULT extern WINAPI WFSRegister (HSERVICE hService, DWORD dwEventClass, HWND
hWndReqg) ;

HRESULT extern WINAPI WFSAsyncRegister (HSERVICE hService, DWORD dwEventClass, HWND
hWndReg, HWND hWnd, LPREQUESTID lpRequestID);

HRESULT extern WINAPI WFSSetBlockingHook (XFSBLOCKINGHOOK lpBlockFunc,
LPXFSBLOCKINGHOOK lppPrevFunc);

HRESULT extern WINAPI WFSStartUp (DWORD dwVersionsRequired, LPWEFSVERSION
1pWFSVersion) ;

HRESULT extern WINAPI WESUnhookBlockingHook () ;
HRESULT extern WINAPI WFSUnlock (HSERVICE hService);

HRESULT extern WINAPI WFSAsyncUnlock (HSERVICE hService, HWND hWnd, LPREQUESTID
1lpRequestID) ;

HRESULT extern WINAPI WFMSetTracelLevel (HSERVICE hService, DWORD dwTracelevel);

144

CWA 16926-1:2015 (E)

/* restore alignment */
#pragma pack (pop)

#ifdef _ cplusplus

} /*extern "C"*/

#endif

#endif /* inc xfsapi h */

145

CWA 16926-1:2015 (E)

16.2 XFSADMIN.H

/****** KKK AKAAKAAKAAAAKRKT A A AAKR A A A AR AR A AR A AR AR A A A AR AR A AR AA A A AR A A A A AR AR A AR AR A A A A K Ak kK

* *
* xfsadmin.h XFS-Administration and Support functions *
* *
* Version 3.30 (March 19 2015) *
* *
khhkh Ak hk hkhkhkhkhk Ak hkkhkhkhkkhkhkkhkhkhkhkhrhhhkhkhkkhhkhkhhrkhkhhkkhkhkhhkhkhhkhkhkhkhkhkhhhkhkhkhkhkhkkhhkhhkhkhhhkkhkhkhdx kkhkxkxx ***/

#ifndef INC XFSADMIN H
#define INC XFSADMIN H

#ifdef _ cplusplus
extern "C" {

#endif
#include <xfsapi.h>
/* be aware of alignment */

#pragma pack (push,1)

/* values of ulFlags used for WFMAllocateBuffer */

#define WFS MEM SHARE 0x00000001
#define WFS MEM ZEROINIT 0x00000002

/****** Support Functions **/

HRESULT extern WINAPI WFMAllocateBuffer(ULONG ulSize, ULONG ulFlags, LPVOID *
lppvData) ;

HRESULT extern WINAPI WFMAllocateMore(ULONG ulSize, LPVOID lpvOriginal, LPVOID *
lppvData) ;

HRESULT extern WINAPI WEMFreeBuffer(LPVOID lpvData) ;

HRESULT extern WINAPI WFMGetTracelevel (HSERVICE hService, LPDWORD lpdwTracelevel);
HRESULT extern WINAPI WFMKillTimer (WORD wTimerID);

HRESULT extern WINAPI WEMOutputTraceData (LPSTR lpszData);

HRESULT extern WINAPI WEMReleaseDLL (HPROVIDER hProvider);

HRESULT extern WINAPI WEFMSetTimer (HWND hWnd, LPVOID lpContext, DWORD dwTimeVal,
LPWORD lpwTimerID) ;

/* restore alignment */

#pragma pack (pop)

#ifdef _ cplusplus

} /*extern "C"*/
#endif
#endif /* _ INC XFSADMIN H */

146

CWA 16926-1:2015

16.3 XFSCONF.H

(E)

/****** KKK AKAAKAAKAAAAKRKT A A AAKR A A A AR AR A AR A AR AR A A A AR AR A AR AA A A AR A A A A AR AR A AR AR A A A A K Ak kK

* *
* xfsconf.h XFS - definitions for the Configuration functions *
* *
* Version 3.30 (March 19 2015) *
* *
R R S R I S R e I Sh b b e b b b b I b b b b I S b b b I S S b b R S S b S S S S S I S S S b S S S b b b e b b db b b S 2 db b b S ***/

#ifndef INC_XFSCONF__H
#define INC XFSCONF_H

#ifdef _ cplusplus
extern "C" {
fendif

/******* COmMmON * *FHxxKx Ak KX KX AXXXX XAXXXK XXX KK XA hhk hkkkk kokkkok kokokdkok ok hokkk ok kkkkx ***/

#include <xfsapi.h>

/* be aware of alignment */
fpragma pack (push, 1)

// following HKEY and PHKEY are already defined in WINREG.H
// so definition has been removed

// typedef HANDLE HKEY;

// typedef HANDLE * PHKEY;

/******* value Of hKey ***/

#define WEFS_CFG_HKEY XFS ROOT ((HKEY) 1)
#define WFS_CFG_HKEY MACHINE XFS ROOT ((HKEY) 2)
#define WFS_CFG_HKEY USER DEFAULT XFS ROOT ((HKEY)3)

/******* Values of ldeDlSpOSlthn ***/

#define WFS_CFG_CREATED NEW KEY (0)
#define WFS_CFG_OPENED EXISTING KEY (1)

/******* Configuration Functions ***/

HRESULT extern WINAPI WFMCloseKey (HKEY hKey);

HRESULT extern WINAPI WFMCreateKey (HKEY hKey, LPSTR lpszSubKey, PHKEY phkResult
LPDWORD lpdwDisposition);

HRESULT extern WINAPI WFMDeleteKey (HKEY hKey, LPSTR lpszSubKey);

HRESULT extern WINAPI WFMDeleteValue (HKEY hKey, LPSTR lpszValue);

’

HRESULT extern WINAPI WFMEnumKey (HKEY hKey, DWORD iSubKey, LPSTR lpszName, LPDWORD

lpcchName, PFILETIME lpftLastWrite);

HRESULT extern WINAPI WFMEnumValue (HKEY hKey, DWORD iValue, LPSTR lpszValue,
LPDWORD lpcchValue, LPSTR lpszData, LPDWORD lpcchData);

HRESULT extern WINAPI WFMOpenKey (HKEY hKey, LPSTR lpszSubKey, PHKEY phkResult);

HRESULT extern WINAPI WFMQueryValue (HKEY hKey, LPSTR lpszValueName, LPSTR
lpszData, LPDWORD lpcchData);

HRESULT extern WINAPI WFMSetValue (HKEY hKey, LPSTR lpszValueName, LPSTR lpszData,

DWORD cchbhata) ;

/* restore alignment */
#pragma pack (pop)

#ifdef _ cplusplus
} /*extern "C"*/
#endif

147

CWA 16926-1:2015 (E)

#endif /* _ INC_XFSCONF__H */

148

CWA 16926-1:2015 (E)

16.4 XFSSPI.H

/****** KKK AKAAKAAKAAAAKRKT A A AAKR A A A AR AR A AR A AR AR A A A AR AR A AR AA A A AR A A A A AR AR A AR AR A A A A K Ak kK

* *
* xfsspi.h XFS - SPI functions, types, and definitions *
* *
* Version 3.30 (March 19 2015) *
* *
* /

R e SR R b S S S b b b S b b b S S b b b I S b b b I S S b S b S S S S R I e S S S I S S S SR R e e S b b b S e b b b b b b b b b I S S b b I S i 3

#ifndef inc xfsspi h
#define inc xfsspi h

#ifdef _ cplusplus
extern "C" {

#endif

#include <xfsapi.h>

typedef HANDLE HPROVIDER;

#include <xfsconf.h>
#include <xfsadmin.h>

/* be aware of alignment */
fpragma pack (push, 1)

/****** SPI functions **/
HRESULT extern WINAPI WFPCancelAsyncRequest (HSERVICE hService, REQUESTID RequestID) ;
HRESULT extern WINAPI WFPClose (HSERVICE hService, HWND hWnd, REQUESTID ReqlD);

HRESULT extern WINAPI WEPDeregister (HSERVICE hService, DWORD dwEventClass, HWND
hWndReg, HWND hWnd, REQUESTID ReqglID) ;

HRESULT extern WINAPI WFPExecute (HSERVICE hService, DWORD dwCommand, LPVOID
lpCmdData, DWORD dwTimeOut, HWND hWnd, REQUESTID ReqlD);

HRESULT extern WINAPI WFPGetInfo (HSERVICE hService, DWORD dwCategory, LPVOID
lpQueryDetails, DWORD dwTimeOut, HWND hWnd, REQUESTID ReqlID) ;

HRESULT extern WINAPI WEFPLock (HSERVICE hService, DWORD dwTimeOut, HWND hWnd,
REQUESTID ReglID);

HRESULT extern WINAPI WEFPOpen (HSERVICE hService, LPSTR lpszLogicalName, HAPP hApp,
LPSTR lpszAppID, DWORD dwTraceLevel, DWORD dwTimeOut, HWND hWnd, REQUESTID ReqID,
HPROVIDER hProvider, DWORD dwSPIVersionsRequired, LPWFSVERSION lpSPIVersion, DWORD
dwSrvcVersionsRequired, LPWEFSVERSION lpSrvcVersion) ;

HRESULT extern WINAPI WFPRegister (HSERVICE hService, DWORD dwEventClass, HWND
hWndReg, HWND hWnd, REQUESTID ReqglID) ;

HRESULT extern WINAPI WFPSetTraceLevel (HSERVICE hService, DWORD dwTracelevel);
HRESULT extern WINAPI WFPUnloadService ();

HRESULT extern WINAPI WEPUnlock (HSERVICE hService, HWND hWnd, REQUESTID ReqlD) ;

/* restore alignment */
#pragma pack (pop)

#ifdef _ cplusplus

} /*extern "C"*/

#endif

#endif /* inc xfsspi h */

149

	European foreword
	1. Background to Release 3.30
	2. References
	3. XFS (eXtensions for Financial Services) Overview
	3.1 Architecture
	3.2 API and SPI Summary
	3.3 Device Classes
	3.4 Unicode Encoding Summary

	4. Architectural and Implementation Issues
	4.1 The XFS Manager
	4.2 Service Providers
	4.2.1 Service Provider Functionality
	4.2.2 Service Provider “Packaging”

	4.3 Asynchronous, Synchronous and Immediate Functions
	4.3.1 Asynchronous Functions
	4.3.2 Synchronous Functions
	4.3.3 Immediate Functions

	4.4 Processing API Functions
	4.5 Opening a Session
	4.6 Closing a Session
	4.7 Configuration Information
	4.8 Exclusive Service and Device Access
	4.8.1 Lock Policy for Independent Devices
	4.8.2 Compound Devices

	4.9 Timeout
	4.10 Function Status Return
	4.11 Notification Mechanisms - Registering for Events
	4.12 Application Processes, Threads and Blocking Functions
	4.13 Vendor Dependent Mode
	4.14 Memory Management
	4.15 Command Synchronization
	4.16 Binary Interface

	5. Application Programming Interface (API) Functions
	5.1 WFSCancelAsyncRequest
	5.2 WFSCancelBlockingCall
	5.3 WFSCleanUp
	5.4 WFSClose
	5.5 WFSAsyncClose
	5.6 WFSCreateAppHandle
	5.7 WFSDeregister
	5.8 WFSAsyncDeregister
	5.9 WFSDestroyAppHandle
	5.10 WFSExecute
	5.11 WFSAsyncExecute
	5.12 WFSFreeResult
	5.13 WFSGetInfo
	5.14 WFSAsyncGetInfo
	5.15 WFSIsBlocking
	5.16 WFSLock
	5.17 WFSAsyncLock
	5.18 WFSOpen
	5.19 WFSAsyncOpen
	5.20 WFSRegister
	5.21 WFSAsyncRegister
	5.22 WFSSetBlockingHook
	5.23 WFSStartUp
	5.24 WFSUnhookBlockingHook
	5.25 WFSUnlock
	5.26 WFSAsyncUnlock

	6. Service Provider Interface (SPI) Functions
	6.1 WFPCancelAsyncRequest
	6.2 WFPClose
	6.3 WFPDeregister
	6.4 WFPExecute
	6.5 WFPGetInfo
	6.6 WFPLock
	6.7 WFPOpen
	6.8 WFPRegister
	6.9 WFPSetTraceLevel
	6.10 WFPUnloadService
	6.11 WFPUnlock

	7. Support Functions
	7.1 WFMAllocateBuffer
	7.2 WFMAllocateMore
	7.3 WFMFreeBuffer
	7.4 WFMGetTraceLevel
	7.5 WFMKillTimer
	7.6 WFMOutputTraceData
	7.7 WFMReleaseDLL
	7.8 WFMSetTimer
	7.9 WFMSetTraceLevel

	8. Configuration Functions
	8.1 WFMCloseKey
	8.2 WFMCreateKey
	8.3 WFMDeleteKey
	8.4 WFMDeleteValue
	8.5 WFMEnumKey
	8.6 WFMEnumValue
	8.7 WFMOpenKey
	8.8 WFMQueryValue
	8.9 WFMSetValue

	9. Data Structures
	9.1 WFSRESULT
	9.2 WFSVERSION

	10. Messages
	10.1 Command Completions and Events
	10.1.1 Command Completion Messages
	10.1.2 Event Messages

	10.2 WFS_TIMER_EVENT
	10.3 WFS_SYSE_DEVICE_STATUS
	10.4 WFS_SYSE_UNDELIVERABLE_MSG
	10.5 WFS_SYSE_APP_DISCONNECT
	10.6 WFS_SYSE_HARDWARE_ERROR, WFS_SYSE_SOFTWARE_ERROR, WFS_SYSE_USER_ERROR and WFS_SYSE_FRAUD_ATTEMPT
	10.7 WFS_SYSE_LOCK_REQUESTED
	10.8 WFS_SYSE_VERSION_ERROR

	11. Error Codes
	12. Appendix A - Planned Enhancements and Extensions
	12.1 Event and System Management

	13. Appendix B - XFS Workshop Contacts
	14. Appendix C - ATM Devices Synchronization Flow
	14.1 Synchronized Media Ejection

	15. Appendix D – Win64 Migration Considerations
	16. Appendix D - C-Header files
	16.1 XFSAPI.H
	16.2 XFSADMIN.H
	16.3 XFSCONF.H
	16.4 XFSSPI.H

