

WOSA
(Windows



 Open Services Architecture)

Extensions for Financial Services
A Client-Server Architecture for

Financial Enterprise Computing under Microsoft® Windows

Application Programming Interface (API)

Service Provider Interface (SPI)

–––––––––––––––––––

Programmer’s Reference

Revision 2.00

November 11, 1996

Developed by the members of the Banking Solutions Vendor Council

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 ii

Revision History:
 1.0 May 24, 1993 Initial release of API and SPI specification
 1.11 February 3, 1995 Separation of specification into separate documents
 for API/SPI and service class definitions; with updates
 2.00 November 11, 1996 Updated release encompassing self-service environment.

The information in this document was contributed by members of the Banking Solutions Vendor Council
and represents its current views on the issues discussed as of the date of publication. It is furnished for
informational purposes only and is subject to change without notice. The Banking Solutions Vendor
Council makes no warranty, express or implied, with respect to this document.

Microsoft is a registered trademark, and Windows and Windows NT are trademarks of Microsoft

Corporation.

Apple and Macintosh are registered trademarks of Apple Computer, Inc.

IBM and NetView are registered trademarks of International Business Machines Corporation.

UNIX is a registered trademark of UNIX Systems Laboratories.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 iii

Table of Contents

1. Introduction ... 1

1.1 BACKGROUND .. 1

1.2 STRATEGIES... 2

2. WOSA Extensions for Financial Services Overview .. 3

2.1 ARCHITECTURE .. 3

2.2 API AND SPI SUMMARY .. 6

2.3 DEVICE CLASSES ... 7

3. Architectural and Implementation Issues ... 8

3.1 THE XFS MANAGER ... 8

3.2 SERVICE PROVIDERS .. 9

3.2.1 Service Provider Functionality ... 9

3.2.2 Service Provider “Packaging” ... 9

3.3 ASYNCHRONOUS, SYNCHRONOUS AND IMMEDIATE FUNCTIONS .. 10

3.3.1 Asynchronous Functions .. 10

3.3.2 Synchronous Functions .. 10

3.3.3 Immediate Functions .. 11

3.4 PROCESSING API FUNCTIONS ... 11

3.5 OPENING A SESSION ... 11

3.6 CLOSING A SESSION ... 12

3.7 CONFIGURATION INFORMATION ... 14

3.8 EXCLUSIVE SERVICE AND DEVICE ACCESS .. 17

3.8.1 Lock Policy for Independent Devices ... 17

3.8.2 Compound Devices ... 18

3.9 TIMEOUT .. 19

3.10 FUNCTION STATUS RETURN .. 20

3.11 NOTIFICATION MECHANISMS — REGISTERING FOR EVENTS ... 21

3.12 APPLICATION PROCESSES, THREADS AND BLOCKING FUNCTIONS .. 23

3.13 MEMORY MANAGEMENT ... 25

4. Application Programming Interface (API) Functions ... 27

4.1 WFSCANCELASYNCREQUEST .. 29

4.2 WFSCANCELBLOCKINGCALL ... 30

4.3 WFSCLEANUP .. 31

4.4 WFSCLOSE ... 32

4.5 WFSASYNCCLOSE .. 33

4.6 WFSCREATEAPPHANDLE .. 34

4.7 WFSDEREGISTER .. 35

4.8 WFSASYNCDEREGISTER ... 36

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 iv

4.9 WFSDESTROYAPPHANDLE .. 38

4.10 WFSEXECUTE ... 39

4.11 WFSASYNCEXECUTE ... 41

4.12 WFSFREERESULT ... 43

4.13 WFSGETINFO .. 44

4.14 WFSASYNCGETINFO ... 46

4.15 WFSISBLOCKING .. 48

4.16 WFSLOCK ... 49

4.17 WFSASYNCLOCK .. 51

4.18 WFSOPEN... 53

4.19 WFSASYNCOPEN .. 56

4.20 WFSREGISTER .. 59

4.21 WFSASYNCREGISTER ... 61

4.22 WFSSETBLOCKINGHOOK .. 63

4.23 WFSSTARTUP ... 64

4.24 WFSUNHOOKBLOCKINGHOOK ... 66

4.25 WFSUNLOCK .. 67

4.26 WFSASYNCUNLOCK .. 68

5. Service Provider Interface (SPI) Functions .. 69

5.1 WFPCANCELASYNCREQUEST .. 70

5.2 WFPCLOSE ... 71

5.3 WFPDEREGISTER .. 72

5.4 WFPEXECUTE ... 74

5.5 WFPGETINFO .. 76

5.6 WFPLOCK ... 78

5.7 WFPOPEN... 79

5.8 WFPREGISTER .. 82

5.9 WFPSETTRACELEVEL ... 83

5.10 WFPUNLOADSERVICE ... 85

5.11 WFPUNLOCK .. 86

6. Support Functions .. 87

6.1 WFMALLOCATEBUFFER .. 87

6.2 WFMALLOCATEMORE ... 88

6.3 WFMFREEBUFFER .. 88

6.4 WFMGETTRACELEVEL .. 89

6.5 WFMKILLTIMER .. 89

6.6 WFMOUTPUTTRACEDATA .. 89

6.7 WFMRELEASEDLL ... 91

6.8 WFMSETTIMER ... 92

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 v

6.9 WFMSETTRACELEVEL .. 93

7. Configuration Functions .. 95

7.1 WFMCLOSEKEY .. 97

7.2 WFMCREATEKEY .. 97

7.3 WFMDELETEKEY .. 98

7.4 WFMDELETEVALUE .. 98

7.5 WFMENUMKEY ... 99

7.6 WFMENUMVALUE ... 100

7.7 WFMOPENKEY ... 101

7.8 WFMQUERYVALUE .. 102

7.9 WFMSETVALUE .. 103

8. Data Structures .. 104

8.1 WFSRESULT ... 104

8.2 WFSVERSION ... 105

9. Messages ... 106

9.1 COMMAND COMPLETIONS AND EVENTS ... 106

9.1.1 Command Completion Messages.. 106

9.1.2 Event Messages .. 106

9.2 TIMER EVENTS ... 106

9.3 DEVICE STATUS CHANGES .. 107

9.4 UNDELIVERABLE MESSAGES .. 108

9.5 APPLICATION DISCONNECT ... 109

9.6 HARDWARE AND SOFTWARE ERRORS ... 110

9.7 VERSION NEGOTIATION FAILURES ... 111

10. Error Codes .. 112

11. Appendix A - Planned Enhancements and Extensions ... 1

11.1 EVENT AND SYSTEM MANAGEMENT ... 1

12. Appendix B - Banking Solutions Vendor Council Contacts ... 2

13. Appendix C - Other WOSA Specifications and Information .. 3

14. Appendix D - C-Header files ... 4

14.1 XFSAPI.H ... 4

14.2 XFSADMIN.H ... 9

14.3 XFSCONF.H... 10

14.4 XFSSPI.H ... 11

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 1

1. Introduction

This is revision 2.0 of the API/SPI specification for the Windows Open Services Architecture,
Extensions for Financial Services (WOSA/XFS). The other relevant specifications are the service class
specifications. These specifications are part of the Software Development Kit (SDK), which supplies
the components and tools to allow the implementation of compliant applications and services. These
specifications are distributed to the financial services community for continuing review and comment,
to allow them to provide input to the ongoing enhancement of WOSA/XFS.

Release 2.0 extends the scope of WOSA/XFS to include both the self service/ATM environment as
well as the branch environment. The new specification now fully supports cameras, deposit units,
identification cards, PIN pads, sensors and indicator units, text terminals, cash dispenser modules and
a wide variety of printing mechanisms.

The members of the Banking Solutions Vendor Council encourage banks and other financial service
companies world-wide, as well as other technology suppliers, to get updated information on the status
of the project, and to submit comments, questions and requests for the specification and SDK. This
may be done via one of the council members or via the Microsoft web site :

www.microsoft.com/industry/bank.

The Banking Solutions Vendor Council is accepting applications for affiliate membership; interested
parties should contact one of the council members or send email to bsvc@microsoft.com.

1.1 Background

The Banking Solutions Vendor Council, an organization of leading vendors of information technology to the
financial services industry, was formally announced at the American Bankers Association National Operations
and Automation Conference (NOAC) in Denver on May 18, 1992. Revision 1.0 of this specification was
released at NOAC in New Orleans on May 24, 1993.

The current charter members of the Banking Solutions Vendor Council are:

 Digital Equipment Corporation  Ing. C. Olivetti & C. S.p.A.
 ICL Plc  Siemens Nixdorf Informationssysteme AG
 Microsoft Corporation  Retail Management Solutions
 NCR Corporation  Unisys Corporation
 Nexus Software Incorporated

The Banking Solutions Vendor Council has held many multi-vendor development meetings, in addition to
numerous additional hours invested in defining this specification for the WOSA Extensions for Financial
Services.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 2

1.2 Strategies

The following key strategies have been adopted by the Banking Solutions Vendor Council to implement the
objectives defined above:

 Use the Microsoft® Windows™ operating systems family as the strategic platform for client-server
computing.

 Adopt the Windows Open Service Architecture (WOSA) family of open interfaces and associated
services for the integration of Windows and Windows-based applications into enterprise computing
solutions.

 Utilize existing WOSA elements wherever possible, defining new elements, or extensions to existing
elements, only when no suitable candidate(s) exist in the evolving WOSA family that meet the needs of
financial services computing. In all cases, existing formal or de facto standards will be utilized to the
maximum degree possible.

 Enhance WOSA with the Extensions for Financial Services to meet the special requirements of
financial applications for access to services and devices.

 Maintain the highest possible level of compatibility of both the API and SPI specifications as the
Extensions for Financial Services evolve to include new and enhanced capabilities.

WOSA comprises a family of stable, open-ended interfaces for enterprise computing environments that hides
system complexities from users and application developers. WOSA allows the integration of Windows and
Windows-based applications seamlessly with all the services and enterprise capabilities that application
developers and users need. It includes such interfaces as:

 Open Database Connectivity (ODBC) for standard access to databases,
 Messaging Application Programming Interface (MAPI) for standard access to messaging services, and
 communications support, including Windows SNA, RPC, and Sockets.

Each of the elements of WOSA includes a set of Application Program Interfaces (APIs) and Service Provider
Interfaces (SPIs), with associated supporting software. The architecture of WOSA is shown below:

W O S A : W ind ow s O p en Serv ices A rch itecture

W in dow s A P Is

S er vice
p ro vid ers

W in dow s

W in d ow s S P Is

W in dow s-ba sed
app lications

For additional information on WOSA, see the WOSA Backgrounder (Microsoft part number 098-34801).

The Extensions for Financial Services extend WOSA by defining a Windows-based client-server architecture for
financial applications. The extensions (as with the other elements of WOSA) include a set of APIs and SPIs
common to multiple financial applications.

The WOSA Extensions for Financial Services are planned to include specifications for access to financial
peripherals (such as passbook/journal/receipt printers, magnetic card readers/writers, PIN pads, etc.), financial
transaction messaging and management, as well as related services for financial networks such as network and
systems management and security. All these capabilities are specified for access from the familiar, consistent
Microsoft Windows user interface and programming environments. Whenever possible, the capabilities will be
incorporated into the family of standard WOSA elements, and will utilize existing formal and de facto standards.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 3

2. WOSA Extensions for Financial Services Overview

A key element of the Extensions for Financial Services is the definition of a set of APIs, a corresponding set of
SPIs, and supporting services, providing access to financial services for Windows-based applications. The
definition of the functionality of the services, of the architecture, and of the API and SPI sets, is outlined in this
section, and described in detail in Sections 5 through 10.

The specification defines a standard set of interfaces such that, for example, an application that uses the API set
to communicate with a particular service provider can work with a service provider of another conformant
vendor, without any changes.

The specification is intended to be usable within all implementations and versions of the Windows operating
systems, from Windows version 3.1, Windows for Workgroups version 3.1 and the initial versions of Windows
NT, and onwards. It thus provides for both 16 and 32 bit operating environments (operating under the Win32s
subsystem in 16 bit environments).

Although the WOSA Extensions for Financial Services define a general architecture for access to service
providers from Windows-based applications, the initial focus of the Banking Solutions Vendor Council has been
on providing access to peripheral devices that are unique to financial institutions. Since these devices are often
complex, difficult to manage and proprietary, the development of a standardized interface to them from
Windows-based applications and Windows operating systems can offer financial institutions and their solution
providers immediate enhancements to productivity and flexibility.

2.1 Architecture

The architecture of the WOSA Extensions for Financial Services (WOSA/XFS) system is shown below.

WOSA/XFS APIs

Service

providers

WOSA/XFS Manager

WOSA/XFS SPIs

Windows-based

applications

Configuration
Information

Figure 2.1 — WOSA Extensions for Financial Services Architecture

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 4

The applications communicate with service providers, via the WOSA Extensions for Financial Services
Manager, using the API set. Most of these APIs can be invoked either "synchronously" (the Manager causes the
application to wait until the API's function is completed) or "asynchronously" (the application regains control
immediately, while the function is performed in parallel).

The common deliverable in all implementations of this WOSA Extensions for Financial Services specification is
the WOSA Extensions for Financial Services Manager, which maps the specified API to the corresponding SPI,
then routes this request to the appropriate service provider. The Manager uses the configuration information to
route the API call (made to a "logical service" or a "logical device") to the proper service provider entry point
(which is always local, even though the device or service that is the final target may be remote). Note that even
though the API calls may be either synchronous or asynchronous, the SPI calls are always asynchronous.

The developers of financial services to be used via XFS and the manufacturers of financial peripherals will be
responsible for the development and distribution of service providers for their services and devices. A setup
routine for each device or service will also be necessary to define the appropriate configuration information.
This information will allow an application to request capability and status information about the devices and
services available at any point in time.

The primary functions of the service providers are to:

 Translate generic (e.g., forms-based) service requests to service-specific commands.
 Route the requests to either a local service or device, or to one on a remote system, effectively defining

a peer-to-peer interface among service providers.
 Arbitrate access by multiple applications to a single service or device, providing exclusive access when

requested.
 Manage the hardware interfaces to services or devices.
 Manage the asynchronous nature of the services and devices in an appropriate manner, always

presenting this capability to the XFS Manager and the applications via Windows messages.

The system design supports solution of complex problems, often not addressed by current systems, by providing
for maximum flexibility in all its capabilities:

 Multiple service providers, developed by multiple vendors, can coexist in a single system and in a
network.

 The service class definition is based on the logical functionalities of the service, with no assumption
being made as to the physical configuration. A physical device that includes multiple distinct physical
capabilities (referred to as a "compound device" in this specification) is treated as several logical
services; the service provider resolves any conflicts. Note also that a logical service may include
multiple physical devices (for example, a cash dispenser consisting of a note dispenser and coin
dispenser).

 Similarly, a physical device may be shared between two or more users (e.g., tellers), and the physical
device synchronization is managed at the service provider level.

 The API definition and associated services provide time-out functionality to allow applications to avoid
deadlock of the type that can occur if two applications try to get exclusive access to multiple services at
the same time.

 The architecture is designed to provide a framework for future development of network and system
monitoring, measurement, and management.

Note that Figure 2.1 is a high level view of the architecture and, in particular, it makes no distinction between
service providers and the services they manage. This specification focuses on service providers rather than on
services, because the way a service provider communicates with a service is a vendor-specific internal design
issue that applications and the XFS Manager are unaware of. In fact, there are many different ways that service
providers can make services available to applications. Hence, this specification refers primarily to the service
providers, since these are the modules with which the XFS Manager communicates. There are occasional
references to 'service' where this is appropriate.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 5

Example
Figure 2.2 below shows a WOSA/XFS system supporting a set of financial peripherals. Note that in this
framework the XFS Manager interfaces directly with a set of service providers that interface directly with the
physical devices. Thus, the service providers are shown as implementing the service provider, service, and
device driver functions, although these are more likely to be two or more separate layers. Many other
configurations are possible.

WorkStation 1 WorkStation 2

Application

WOSA/XFS API

WOSA/XFS SPI

WOSA/XFS
Manager

Configuration
Information

Passbook
Printer
Service
Provider

Vendor X

Passbook
Printer
Service
Provider

Vendor Y

Passbook
Printer
Service
Provider

Vendor Y

Magnetic
Card Reader
Service Provider

Vendor Y

Passbook
Printer
Vendor X

Passbook
Printer
Vendor Y

Magnetic
Card Reader
Vendor Y

WorkStation 3

Passbook
Printer
Service
Provider

Vendor X

Passbook
Printer
Vendor X

Application

WOSA/XFS API

WOSA/XFS SPI

WOSA/XFS
Manager

Configuration
Information

Application

WOSA/XFS API

WOSA/XFS SPI

WOSA/XFS
Manager

Configuration
Information

Figure 2.2 — A WOSA/XFS architecture example for a branch office banking system

It should also be noted that one vendor's service providers are not necessarily compatible with another vendor's,
as shown in Figure 2.2. If one application has to access the same service class as implemented by different
vendors, a service provider is installed for each vendor.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 6

2.2 API and SPI Summary

Sections 5 through 7 of this document present the interfaces that allow a financial application to communicate in
a standard fashion with financial services and devices. The functions are at a sufficiently high level to allow for
seamless redirection to other parts of the underlying operating system. A printer, for example, might rely on a
set of services provided by the operating system, but in order to handle the unique characteristics of a financial
printer and application, the service provider would preprocess the command, then redirect the derived commands
to the operating system's printing services. In other implementations, the printer might be supported entirely by
WOSA/XFS service mechanisms, and not use the operating system printing services in any way.

The API is structured as sets of:

 Basic functions, such as StartUp/CleanUp, Open/Close, Lock/Unlock, and Execute, that are
common to all the WOSA Extensions for Financial Services device/service classes,

 Administration functions, such as device initialization, reset, suspend or resume, used for managing
devices and services, and

 Specific commands, used to request information about a service/device, and to initiate device/service-
specific functions; these are sent to devices and services as parameters of the GetInfo and Execute
basic functions. These service-specific commands are specified in a set of separate specifications, one
for each service class.

To the maximum extent possible, the syntax of specific commands that are used with multiple device/service
classes is kept consistent across all devices. A primary objective is to standardize function codes and structures
for the widest possible variety of devices.

The SPI is kept as similar as possible to the API. Some commands are processed exclusively by the XFS
Manager, and so are not in the SPI, and there are minor differences in the specific parameters passed at the two
interface levels.

A typical scenario showing the usage of the APIs is shown below. This example illustrates the functions used to
print a form.
 StartUp (connects the application to the XFS Manager, including version negotiation)

 Open (establishes a session between the application and the service provider)
 Register (specifies the messages that the application should receive from the service provider)
 Lock (obtains exclusive access to the service by the application)

 multiple Execute functions, passing one or more specific commands:
 Print_Form
 etc.

 Unlock (releases exclusive access to the service by the application)
 Deregister (specifies that the application should no longer receive messages from the service

provider)
 Close (ends the session between the application and the service provider)

 CleanUp (disconnects the application from the XFS Manager)

Note that within a session (defined by Open and Close), an application may at any time change the classes of
messages it wishes to receive from the service provider (using Register), and may either Lock the service only
for specified periods (typically for each transaction), or for the entire session. Also, note that several of the
commands are optional, depending on how the device is being managed and shared (i.e., Lock/Unlock,
Register/Deregister).

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 7

2.3 Device Classes

The classes of devices that belong to the second version of the WOSA Extensions for Financial Services are
described in the separate Service Class Definition Document.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 8

3. Architectural and Implementation Issues

The remainder of this document provides the technical specifications for the Windows Open Services
Architecture (WOSA) Extensions for Financial Services (referred to hereafter as “WOSA/XFS” for brevity).

In this specification, the functions of the WOSA/XFS Application Programming Interface (API) and Service
Provider Interface (SPI) are always described in terms of providing a standardized, portable interface for
applications to gain access to service providers. This architecture allows service providers to deliver an open-
ended set of capabilities to financial applications based on the Microsoft Windows operating systems, including
access to peripheral devices unique to financial institutions. Since the first priority of the BSVC members for
WOSA/XFS implementations will be to provide this peripheral device access capability, the examples used
relate primarily to device control and physical input/output.

The key elements of the Extensions for Financial Services are the API definition and the corresponding SPI
definition, used by the XFS Manager to communicate with the service providers, together with the set of
supporting services provided by the XFS Manager. These elements are combined in a WOSA/XFS
implementation, providing access to financial devices and services for Windows-based applications.

The specification defines a standard set of interfaces in order to provide multi-vendor interoperability: if an
application uses the API to communicate successfully with a service provider, it should work with another
conformant service provider of the same type, developed by another vendor, without any changes. Similarly,
any service provider that conforms to the SPI definition can work with a range of conformant applications.

The specification is intended to be usable within all implementations and versions of the Windows operating
systems, beginning with versions 3.1 of Windows, Windows for Workgroups, and Windows NT, and all future
versions of these operating systems. In the 16 bit operating systems (Windows 3.x, Windows for Workgroups
3.x) the elements of an XFS subsystem (applications, XFS Manager, and service providers) will be 32 bit
modules, implemented using the Win32s API. The specification thus provides for the development and
deployment of 32 bit applications on both 16 and 32 bit operating systems, and the WOSA/XFS software
development kit will include versions of the XFS Manager and associated programming aids that will allow
development of applications and service providers for both environments.

For clarity, three prefixes are used in naming the function interfaces in WOSA/XFS:

Function type: Prefix Functions called by Functions provided by
 API functions: WFS...

(WOSA Financial Services)
 Applications  XFS Manager (and typically

passed through to WFP functions)
 SPI functions: WFP...

(WOSA Financial Services Providers)
 XFS Manager  Service providers

 Support/Configuration functions: WFM...
(WOSA Financial Services Manager)

 Service providers
 Applications

 XFS Manager

3.1 The XFS Manager

The XFS Manager provides overall management of the WOSA/XFS subsystem. The XFS Manager is
responsible for mapping the API (WFS...) functions to SPI (WFP...) functions, and calling the appropriate
vendor-specific service providers. Note that the calls are always to a local service provider.

The XFS Manager determines which service provider to call using the logical name parameter of the WFSOpen
or WFSAsyncOpen function. The logical name is the key providing access to the configuration information that
defines the Service Class (e.g., printer, cash dispenser, etc.), the Service Type (e.g., receipt printer, journal
printer, etc.) and the Service Provider (DLL file name), as well as additional information. The logical name
must be unique at least within each workstation. See Sections 3.7 and 7 for discussions of configuration
information access and management.

The XFS Manager also provides the Support Functions (WFM...) defined in Section 6 and the Configuration
Functions (also WFM...) defined in Section 7.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 9

Before an application is allowed to utilize any of the services managed by the WOSA/XFS subsystem, it must
first identify itself to the subsystem. This is accomplished using the WFSStartUp function. An application is
only required to perform this function once, regardless of the number of WOSA/XFS services it utilizes, so this
function would typically be called during application initialization. Similarly, the complementary function,
WFSCleanUp, is typically called during application shutdown. If an application exits or is shut down without
issuing the WFSCleanUp function, the XFS Manager does the cleanup automatically, including the closing of
any sessions with service providers the application has left open.

3.2 Service Providers

Each WOSA/XFS service, for each vendor, is accessed via a service-specific module called a service provider.
For example, vendor A's journal printer is accessed via vendor A's journal printer service provider, and vendor
B's receipt printer is accessed via vendor B's receipt printer service provider.

The following sections describe the functionality and packaging of service providers.

3.2.1 Service Provider Functionality

The primary functions of WOSA/XFS service providers, working in conjunction with their respective services
and/or device drivers, are as follows. Note that how these functions are implemented is left to the service
provider developer.

 Route the requests to the device or service, which may be on a remote workstation.

Service providers may communicate with remote services in a variety of ways, such as NetBIOS, named
pipes, RPC (Remote Procedure Calls), Windows Sockets, proprietary network programming interfaces, etc.

 Translate the generic requests to resource specific commands.

Note that this involves translation not just to service-specific commands, but to the commands native to the
resource being used. For example, the commands would not be translated to "Receipt Printer Service"
commands, but to "Brand X, Model Y Receipt Printer" commands. For example, a driver may implement
device-specific translation tables or processes itself, or utilize standard operating system device interfaces
(such as the Windows GDI), if they exist for the particular peripheral.

 Arbitrate access to the resource by multiple applications.

Note that when a physical device includes multiple peripherals (for example, a receipt and journal printer in
a single unit), this may also include arbitration of the sub-devices.

 Manage the interface to the resource.

When physical devices are being controlled, this includes managing the hardware interface to the device.
For example, the service providers may use standard operating system device drivers, vendor-written
proprietary device drivers, etc.

 Manage the asynchronous nature of the services in a consistent manner with respect to the applications.

The asynchronous nature of the SPI must always be presented back to the XFS Manager and the
applications in the form of Windows messages, as in other WOSA components such as the Windows
Sockets or Windows SNA APIs.

 Error recovery.

In some kinds of software failures, such as an application crash, the service provider loses connection with
the application. In this situation, the service provider is responsible for an “orderly” shutdown of the
session with that application. In particular, the service provider generates a system event (see Section 3.11)
indicating that the connection was lost, and if any requests from the application were outstanding, it
generates a system event for each completion that would normally have generated a completion message to
the application.

3.2.2 Service Provider “Packaging”

WOSA/XFS service providers can be “packaged” into DLLs in a variety of ways:
 One service provider per DLL; for example, a vendor might produce a journal printer DLL, a receipt printer

DLL, a cash dispenser DLL, etc.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 10

 Multiple service providers per DLL; for example a vendor might produce a DLL which contains the service
providers for all XFS-compliant printers.

 All service providers for a specific vendor in a single DLL.

3.3 Asynchronous, Synchronous and Immediate Functions

Windows and WOSA/XFS are built on an event-driven, asynchronous model. However, the WOSA/XFS design
allows an application using its interfaces to behave in either an asynchronous or synchronous manner. Thus the
API supports two versions of each of the appropriate functions (e.g., an application can request to lock a service
using either the asynchronous WFSAsyncLock function or the synchronous WFSLock function).

Each WOSA/XFS API function operates in one of three synchronization modes: asynchronous, synchronous or
immediate. These are described in the following sections.

Note that the SPI is purely an asynchronous interface, so all SPI functions are either asynchronous or immediate;
there are no synchronous SPI functions.

See Sections 4 and 5 for a summary of the API and SPI functions and their synchronization modes.

3.3.1 Asynchronous Functions

Asynchronous mode is used for operations which may take an indeterminate amount of time to complete.
Performing an operation in an asynchronous, as opposed to a synchronous, mode allows the application to
operate in Windows' native event-driven, message-based manner. The processing of an asynchronous request
(e.g., WFSAsyncExecute) is as follows:

 The application calls the XFS Manager.
 The XFS Manager generates a sequence number, the RequestID, assigns it to the request, and calls the

service provider.
 The service provider schedules the request for deferred processing and immediately returns to the XFS

Manager.
 The XFS Manager returns the RequestID to the application, with a status indicating that the request has been

initiated and is being processed.
 At some point, the service provider processes the deferred request.
 On completion, the service provider posts a completion message to the window handle specified by the

application in its original call. (For flexibility, an application using asynchronous functions can specify a
different window for each request.) The message contains a pointer to a WFSRESULT data structure
defining the results of the request, including the RequestID, the status code and the other relevant data.

3.3.2 Synchronous Functions

Synchronous mode is also used when an operation can take an indeterminate amount of time to complete, but the
application wishes to handle the function in a sequential manner. The XFS Manager does not return control to
the application until the operation has completed, thus synchronous functions are referred to as blocking. Each
synchronous call made by an application is translated by the XFS Manager into its asynchronous SPI counterpart
before being passed to the service provider.

If a blocking operation is not completed immediately in a Windows 3.x system, the XFS Manager executes a
Windows message loop on behalf of the calling thread, thereby keeping the Windows system running. See
Section 3.12 for a more detailed discussion of process, threads and message loops. In Windows NT, the calling
application thread is blocked on request completion. A thread may have only one blocking WOSA/XFS call
outstanding at any one time. See Section 3.12 for additional discussion of the management of synchronous
functions, including replacement of the default message loop.

The processing of a synchronous request (e.g., WFSExecute) is as follows:
 The application calls the XFS Manager.
 The XFS Manager translates the request into an asynchronous SPI, generates a RequestID to track the

request, provides its own window handle to receive the completion message, and calls the service provider
DLL.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 11

 The service provider schedules the request for deferred processing and immediately returns to the XFS
Manager.

 The XFS Manager simulates synchronous processing as described above and in Section 3.12.
 At some point, the service provider processes the deferred request.
 On completion, the service provider posts a completion message to the window handle specified by the XFS

Manager. The message contains a pointer to a WFSRESULT data structure defining the results of the
request, including the RequestID, the status code and the other relevant data.

 The XFS Manager unpacks the information from the completion message into the appropriate parameters,
and returns them to the application, unblocking the original application request.

3.3.3 Immediate Functions

These are API functions that are not either asynchronous or synchronous. Typically, immediate APIs are those
which do not communicate with a service or a physical device (or use the network in any other way) and are thus
guaranteed to complete immediately, whether successfully or not. They are handled in two ways:
 Processed entirely by the XFS Manager, which returns immediately to the application. Examples include

WFSStartUp, and WFSSetBlockingHook.
 Passed by the XFS Manager to the service provider as an immediate SPI. The service provider processes

the request and immediately returns to the XFS Manager, which returns immediately to the application.
Examples include WFSCancelAsyncRequest and WFMSetTraceLevel.

3.4 Processing API Functions

When an application calls a WOSA/XFS API function one of the following processing scenarios takes place.
Note that this classification is distinct from the API synchronization modes discussed above. See Section 5 for
the mapping of API functions to SPI functions.
 The function is converted by the XFS Manager directly into the corresponding SPI function

(e.g., WFSAsyncRegister).
 The XFS Manager performs some preprocessing and then converts the function into the corresponding SPI

function (e.g., WFSAsyncExecute).
 The XFS Manager performs some preprocessing and then translates the API function to a different SPI

function, which it passes to the service provider. Most of the synchronous API functions (e.g., WFSLock)
are of this type, since they are translated to their asynchronous SPI equivalents.

 The XFS Manager performs some preprocessing and then translates the API function to multiple SPI
functions, which it passes to the service provider (e.g., WFSOpen).

 The function is completely processed inside the XFS Manager (e.g., WFSIsBlocking,
WFSSetBlockingHook).

Service providers (and sometimes applications) call the XFS Manager for the support functions defined in
Section 6 and for the configuration functions defined in Section 7.

3.5 Opening a session

Once a connection between an application and the XFS Manager has successfully been negotiated (via
WFSStartUp), the application establishes a virtual session with a service provider by issuing a WFSOpen (or
WFSAsyncOpen) request. Opens are directed towards “logical services” as defined in the WOSA/XFS
configuration. A service handle (hService) is assigned to the session, and is used in all the calls to the service in
the lifetime of the session.

Note that applications may optionally choose to explicitly manage the concept of “application identity” when
they need to use interdependent compound devices (see Section 3.8.2). This is achieved by using the
WFSCreateAppHandle function to get an application handle (hApp), which is unique within the system. This
function can be called multiple times to obtain multiple unique handles. An application handle parameter is then
used in the WFSOpen function, directing the service provider to bind the specified application handle to the
session being initiated. This allows a single application process (potentially multi-threaded) to act as multiple
applications to the WOSA/XFS subsystem, to allow effective use of interdependent compound devices. An
example of a case in which this could be useful is an application using the Multiple Document Interface (MDI);
the application could associate an application handle with each MDI child window. See Section 3.8.2 for

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 12

additional discussion of the use of application handles with compound devices. Note that neither service nor
application handles may be shared among two or more applications.

The actions performed by the XFS Manager on an open are as follows:
 Retrieves the configuration information defining the specified logical service, in order to determine the DLL

name of the service provider. The logical service name is the key to the configuration information.
 Loads the DLL containing the requested service provider, if it is not already loaded.
 Performs pre-processing and translation as necessary, depending on whether the synchronous or

asynchronous open API has been issued.
 Generates a unique service handle (hService) that identifies the session with the service provider that is

being established, to be passed back to the application as a parameter.
 Calls the service provider's WFPOpen function, passing the parameters needed.

The service provider does the following:
 Performs version negotiation, using the parameters specifying the SPI version requested by the XFS

Manager, and the service-specific interface version requested by the application.
 Retrieves the configuration information.
 Asynchronously establishes a session with the service specified in the configuration on the specified

workstation, if necessary, relying on the transport facilities provided.
 Upon completion of the request, posts a completion message (WFS_OPEN_COMPLETE), which goes to

the application for a WFSAsyncOpen call, and to the XFS Manager for a WFSOpen call.

Note that even if the service is locked by another application, the open function succeeds, as defined in Section
3.8, “Exclusive Service and Device Access.”

An application programmer has at least two obvious choices as to when to perform the WFSOpen (and the
complementary WFSClose) of the services it utilizes:
 Open the services during application initialization, keep them open, and close them during application

shutdown.
 Perform the open each time the service is required, utilize it, and immediately close it.

Each technique has its own advantages. For example, while the first example might provide better performance,
the second might be easier to program. In any case, upon a successful completion of an open, the WOSA/XFS
subsystem returns a service handle which must be used for all subsequent communication with the service.

Note that an application must perform an open for each logical service that it wishes to utilize, even if the
services are of the same type. For example, if an application wishes to utilize two separate receipt printers, it
must open two separate logical services.

Furthermore, an application may need to open multiple logical services, even when a set of devices are housed in
a single device. For example, consider a compound printer which includes both a receipt and a journal printer.
If the application requires access to both the receipt and journal printer functions, it must open both a receipt
logical service and a journal logical service.

3.6 Closing a Session

When an application no longer requires the use of a particular service, it issues a WFSClose or
WFSAsyncClose request. The WOSA/XFS subsystem then closes that session as follows:
 The XFS Manager calls the service provider's WFPClose function.
 The service provider schedules the request for deferred processing, and returns immediately to the XFS

Manager. Note that at this point the service handle, hService, is no longer valid.
 At some point, the service provider processes the deferred close request, communicating with the service as

necessary to accomplish the request.
 Requests that were issued by the application before the close are executed.
 If the calling application has the service locked under the same hService, the service provider unlocks it

automatically (following the standard lock policy as defined in Section 3.8).
 The service cleans up its administrative information (removes WFSRegister entries etc.).

If the WOSA/XFS subsystem loses connection to an application, it closes the session as described above, and:

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 13

 An “application disconnect” event (SYSTEM_EVENT class) is generated.
 Since messages can no longer be posted to the application, any command completion and event notification

messages from this service for the application are converted to “undeliverable message” events
(SYSTEM_EVENT class).

Note that it is required that some application have registered for system events, or these events are effectively not
reported.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 14

3.7 Configuration Information

The XFS Manager uses its configuration information to define the relationships among the applications and the
service providers. In particular, this information defines the mapping between the logical service interface
presented at the API (via logical service name) and the appropriate service provider entry points.

The configuration information also includes specific information about logical services and service providers,
some of which is common to all solution providers; it may also include information about physical services, if
any are present on the system, and vendor-specific information. The location of the information is transparent to
both applications and service providers; they always store and retrieve it using the configuration functions
provided by the XFS Manager, as described in Section 7, for portability across Windows platforms.

It is the responsibility of solution providers, and the developers of each service provider, to implement the
appropriate setup and management utilities, to create and manage the configuration information about the XFS
subsystem configuration and its service providers, using the configuration functions.

These functions are used by service providers and applications to write and retrieve the configuration
information for a WOSA/XFS subsystem, which is stored in a hierarchical structure called the XFS configuration
registry. The structure and the functions are based on the Win32 Registry architecture and API functions, and
are implemented in Windows NT and future versions of Windows using the Registry and the associated
functions. For Win32s-based implementations on Windows 3.1 and Windows for Workgroups, a subset of the
functionality described here will be available; the SDK will define this subset.

Each node in the configuration registry is called a key, each having a name and (optionally) values. All values
consist of a name and data pair, both null-terminated character strings. The structure is as follows:
(1) The top level is the root node for the WOSA/XFS subsystem. Its key name is WOSA/XFS_ROOT (it is a

subkey of HKEY_CLASSES_ROOT in the Win32 Registry).
(2) The second level contains at least three keys: XFS_MANAGER, LOGICAL_SERVICES, and

SERVICE_PROVIDERS. Other keys (e.g., PHYSICAL_SERVICES) may be defined and used as
required.

(3) Below the XFS_MANAGER key there are values and/or keys for information that the XFS Manager
creates and uses.

(4) Below the LOGICAL_SERVICES key there is a key for each logical service defined for the system on
which the registry resides; the key names are the logical service names (the lpszLogicalName parameter of
the WFSOpen, WFSAsyncOpen and WFPOpen functions). Since there is only one registry per
workstation, this enforces the requirement that logical service names are unique within at least the
workstation.

(5) Below the SERVICE_PROVIDERS key there is a key for each service provider defined for the system.

The configuration functions provide the capabilities to create, enumerate, open and delete keys, and to set, query
and delete values within each key. Vendor-provided configuration utility programs set up the registry structure
and its contents, using these functions. The third level contains the values and keys that define how the XFS
subsystem, services and providers are configured. These are used by the XFS Manager, applications and service
providers. Note that vendor-specific information may be added to any key in this structure, using optional
values.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 15

The figure below illustrates the structure of the configuration registry:

WOSA/XFS
Root

PROVIDERS

Provider nProvider 1

SERVICES

LOGICAL_ SERVICE_

Service 1
Logical

Service n
Logical

(other keys

optional)

Service Service

SERVICES

PHYSICAL_

Service 1
Physical

Service n
Physical

(optional)
MANAGER

XFS_

Info
XFS Mgr

Info
XFS Mgr

The XFS Manager key has the following optional values:

 TraceFile the name of the file containing trace data. If this value is not set in the
 configuration, trace data is written to the default file path\name
 C:\XFSTRACE.LOG.

 ShareFilename the name of the memory mapped file used by the memory management functions
 of the XFS Manager.

 ShareFilesize the size of the memory mapped file used by the memory management functions
 of the XFS Manager.

Some additional values could be also defined in the WOSA/XFS SDK release notes. Please refer to the related
document for more information.

Every logical service key has three mandatory values:

 class the service class of the logical service; (see the Service Class Definition
Document for the standard values)

 type the service type of the logical service; the standard values for service type
 are defined in the WOSA/XFS software development kit SDK

 provider the name of the service provider that provides the logical service
 (the key name of the corresponding service provider key)

A service provider key also has three mandatory values:

 dllname the name of the file containing the service provider DLL

 vendor_name the name of the supplier of this service provider

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 16

 version the version number of this service provider

An example of the content of the configuration information for an actual system is shown below. See Section 7
for the definitions of the configuration functions.

WOSA/XFS Registry Root
 Second Level Keys
 Third Level Keys (or values)
 Values

WOSA/XFS_ROOT
 XFS_MANAGER
 TraceFile=<path-name>\<trace-file-
 name>
 ShareFilename=<path-name>\
 <share-file-name>
 ShareFilesize=<file size in bytes>
 LOGICAL_SERVICES
 Passbook1
 class=PTR
 type=PASSBOOK
 provider=Passbook_Receipt
 operator_station=1
 input_paper_source=upper
 < other optional values >
 Receipt1
 class=PTR
 type=RECEIPT
 provider=Passbook_Receipt
 < optional values >
 Journal1
 class=PTR
 type=JOURNAL
 provider=Journal
 < optional values >
 ATSafe1
 class=CDM
 type=ATSAFE
 provider=Cash_Dispenser
 < optional values >
 < other srvcs >
 SERVICE_PROVIDERS
 Cash_Dispenser
 dllname=CASHDISP.DLL
 vendor_name=Big Bank , Inc.
 version=3.50
 < optional values >
 Passbook_Receipt
 dllname=RPPRNTR.DLL
 vendor_name=Code “R Us, Ltd.
 version=1.30
 < optional values >
 Journal
 dllname=JOURNAL.DLL
 vendor_name=Nobugs Systems
 version=2.01
 < optional values >
 < other prvdrs >
 < other keys >

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 17

3.8 Exclusive Service and Device Access

This section describes how application access to services and devices is handled by WOSA/XFS subsystems,
using the lock facility. It discusses the meaning of timers within the context of a lock request and issues that
arise when multiple applications have issued lock requests. It also describes how requests that were submitted to
the service provider prior to a lock request are managed. Furthermore, it describes how compound devices
(physical devices that include two or more logical devices, such as a passbook printer that also includes a
magnetic stripe reader) are handled.

Typically, an application requires exclusive access to a particular service when it is about to utilize it,
particularly in combination with other services. For example, an application may need to use a PIN pad,
magnetic stripe reader, receipt printer and journal printer to complete a transaction. The application must be
guaranteed that it has access to all the devices before starting on the transaction, and that no other application
will be able to use them until the transaction is complete and it has explicitly released them. This is
accomplished by using the WFSLock (or WFSAsyncLock) function and the complementary WFSUnlock
function.

An application should act in a cooperative manner when locking a service, by keeping it locked for the minimum
time period that it requires exclusive access to the service. Typically, this means locking a set of services,
performing a series of requests to the services to complete a transaction, and immediately unlocking the services.

Applications must use appropriate techniques to avoid deadlock when locking multiple services, typically by
making use of the timeout parameter in the lock functions.

Also, note that there are cases in which exclusive access is not a requirement, so that it is not always required
that an application lock a service before issuing execute operations to it.

The lock policy describes the rules that services use in managing lock requests. In the description of this policy,
XFS requests are categorized into three types:

 Non-deferred: Requests that can be processed completely by a service as soon as they arrive (e.g.,
WFPOpen, WFPRegister and most WFPGetInfo calls.

 Deferred: Requests which may not be able to be processed completely as soon as they arrive, typically
because they require hardware and/or operator interaction (e.g., WFPExecute and some WFPGetInfo
calls).

 Lock: WFPLock calls.

The lock policy is described first for independent devices, i.e., logical services that correspond to devices whose
operation is not interdependent with any other (even though they may be housed in the same physical enclosure).
The following section describes the special requirements involved in managing compound interdependent
devices.

3.8.1 Lock Policy for Independent Devices

The following describes how the categories of requests are handled, in each of the lock states of a service. Note
that although the description refers to queues and other implied implementation characteristics, this is only for
convenience; no particular implementation techniques are required.

Service state: UNLOCKED

 Non-deferred requests are processed on arrival.

 Deferred requests are placed in the deferred queue and processed FIFO.

 When a WFPLock request arrives:
 The lock request is placed in the lock queue.
 The service state changes to LOCK_PENDING.

Service state: LOCK_PENDING

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 18

 All requests in the deferred queue that arrived before the pending lock request are processed FIFO;
after all are processed, the the lock queue is processed. Note that depending on the nature of the
service/device, lock requests may be granted FIFO or in some other order, e.g., when an operator takes
an action such as pressing a station button.

 When a lock request has been granted:
 The service state changes to LOCKED.
 Any other pending lock requests from the same “owner” are also granted. (The owner is the same

if it comes from the same workstation and has the same application and service handles.)

Service state: LOCKED

 Arriving requests (except lock requests) are handled as follows:
 Non-deferred requests are processed on arrival.
 Deferred requests that are not WFPExecute requests are placed in the deferred queue.
 WFPExecute requests from the owner of the lock are placed in the deferred queue.
 WFPExecute requests that are not from the owner of the lock are rejected (with error code

WFS_ERR_LOCKED).
 WFPUnlock and WFPClose requests from the owner of the lock are placed in the deferred queue.

(Note that a close request to a locked service is treated as an unlock followed by a close.)
 WFPUnlock and WFPClose requests that are not from the owner of the lock are treated as non-

deferred requests, i.e., processed on arrival.

 The deferred queue is processed FIFO.

 When a WFPLock request arrives:
 If it is from the owner of the lock, it is granted.
 If it is not from the owner of the lock, it is placed in the lock queue.

 When a WFPUnlock or WFPClose request is processed from the deferred queue, or the connection
between the service and the owner of the lock is lost:
 If the lock queue is not empty, the service state changes to LOCK_PENDING.
 If the lock queue is empty, the service state changes to UNLOCKED.

Note that most requests include a timeout parameter which must be managed appropriately, i.e., when the
specified time expires, the request is rejected with the error code WFS_ERR_TIMEOUT. The timeout
parameter is particularly important with the WFSLock request, since it allows applications to set a maximum
time to wait for a lock to be granted, to allow prevention of deadlock situations when requesting locks of
multiple devices.

3.8.2 Compound Devices

Compound devices are very common in the financial services industry. For the purposes of this discussion, there
are three types of compound devices:
 Two or more separate logical devices that share a physical housing (or perhaps some other attribute), but

function completely independently of one another
 Two or more distinct logical devices that are functionally interdependent in some way, such as a journal

printer and passbook printer that use the same print head mechanism
 Two or more logical devices that are simply different logical views of a single physical device, such as a

single printer that is managed as two separate logical devices, a document printer and a passbook printer

The first of these types has no special significance from the XFS point of view. Each of the devices is managed
as a separate logical and physical device, and the system configuration issues (e.g., making sure that devices that
are packaged together are assigned to the same workstation) are left to application utilities outside the scope of
this specification.

The latter two types are treated identically in an XFS system. When any one of a set of interdependent logical
devices that forms a compound device is locked, all the other logical devices in that compound device are also
implicitly locked on behalf of the requesting application. (The specific policy is described below.) If the same
application (see the discussion of “application identity” below and in Section 3.5) explicitly requests a lock of
another of these logical devices, the lock is granted. In order to allow the application to “know” that the devices

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 19

are part of a compound device, and therefore interdependent, the WFSLock function returns an array of service
handles, defining the set of other devices within the compound device that are now explicitly locked by the
application. This allows the application to manage its use of these devices accordingly. Normally, it must use
them in a strictly sequential manner to avoid any possible conflicts, but if it has some special knowledge of how
the devices are related, it may be able to multiplex requests in some ways.

Note that an application can also determine whether a device is compound by using the device capabilities query
function of WFSGetInfo.

There are many different ways in which programmers can make use of multiple threads and/or processes in
financial applications. Each WOSA/XFS service can be controlled from its own thread; all services can be
controlled from a single thread, with other threads/processes used for other application functions; several
identical threads can handle all open services as needed; etc. In some of these models, the “user” of a service
could be considered to be the process as a whole; in other models, the “user” is a single thread. The
WOSA/XFS design allows for both models by providing the programmer the capability to explicitly control the
“identity” of an application. The programmer can make all the threads in a process appear to a service provider
as one “application,” identify each thread as a different “application,” or create some hybrid of these approaches,
allowing interdependent compound devices to be managed correctly no matter what application architecture is
used.

In order to allow this flexibility in application architecture, the “identity” of an application can optionally be
managed explicitly using the concept of application handles. An application handle (hApp) is created using the
WFSCreateAppHandle function, and is guaranteed unique within the system. The WFSOpen function takes
an optional application handle parameter which is bound to the service handle (hService) returned by the open
function. This approach allows applications that use interdependent compound devices to be implemented with
any combination of single or multiple processes and/or threads, by explicitly managing an appropriate set of
application handles. If this facility is not used (indicated by the application using the value
WFS_DEFAULT_HAPP for the hApp parameter in WFSOpen), the XFS subsystem automatically treats each
process as having a single, unique application handle. See Section 3.5 for additional discussion of this topic.

The lock policy for interdependent compound devices uses the same rules as for independent devices, with some
additional constraints. In order to synchronize access via multiple logical services to a single physical device, or
to interdependent devices, the service manages a single lock queue and a single deferred queue for the set of
related logical services. The additional constraints are:

Service state: LOCK_PENDING

 When a lock request has been granted to one of a set of related logical services:
 All the other related services in the set change to a “reserved” state in which they are treated as

being in the LOCKED state for requests not from the owner.
 Any lock request from the owner for one of the reserved services is granted on arrival.
 Lock requests that are not from the owner of the reserved devices are placed in the lock queue.

Service state: LOCKED

 Any lock request from the owner for one of the reserved services is granted on arrival.
 Lock requests that are not from the owner of the reserved devices are placed in the lock queue.
 Note that if a WFPUnlock or WFPClose request is processed for the service, and any other logical

service that is related to this service is in the LOCKED state, then the service state is set to
“reserved,” not UNLOCKED.

 Note also, that if a WFPUnlock or WFPClose request is processed for the service, and the other
logical services that are related to this service are in the “reserved” state, then all these services
change to the UNLOCKED state.

3.9 Timeout

There are two fundamentally different time domains in a system, each having a different implication on the
concept of timeout:
 “user time” = real time; timeout here says simply “this job is taking too long” as defined by the application

and/or the user (indicated by a WFS_ERR_TIMEOUT error code)

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 20

 “service time” = the time taken by the service request within the service; typically, the physical device
operation (indicated by WFS_ERR_DEV_NOT_READY or WFS_ERR_HARDWARE_ERROR error
code)

In WOSA/XFS systems, the service manages the latter, without needing any input from the application, since it
“knows” the charactistics of the device, and can generate a timeout event if the device takes too long, even if the
application timeout value (if any) has not been exceeded. Therefore, the timeout value provided in the API is
treated by the service provider as user/real time. If the time is exceeded, the service provider cancels the request
and returns a timeout event to the application. An application can also specify that a request should wait until
completion, no matter how long the request takes, by specifying the special value WFS_INDEFINITE_WAIT.

3.10 Function Status Return

When a WOSA/XFS API or SPI function call completes, it returns a value that either defines the completion
status, or in the case of asynchronous functions, the status of the initial processing of the request. When an
asynchronous function completes, the completion message includes the final status of the request. The return
value of most functions is a “result handle,” hResult, of type HRESULT. hResult values are defined to be
WFS_SUCCESS (zero) for success; other values indicate the specific error that occurred, as defined in each
function specification.
The XFS Manager and the service providers return status from a function call, in the form of an hResult result
handle, in two manners:

 By returning an hResult value as the function return.

 By posting a completion message to the window specified in the request. The message contains a pointer to
a structure that includes the hResult.

The mechanism depends on the category of function being processed, as follows:

 Immediate API
The XFS Manager processes the request, and immediately returns a result handle. In some cases, the XFS
Manager calls the service provider to process the request, then returns the result handle from the service
provider to the application.

 Asynchronous API
Since the processing is performed in a number of steps, as described earlier, return status is generated at a
number of levels:
 The service provider performs any validations which can be processed immediately.
 If an error is detected, the service provider returns the hResult to the XFS Manager, which immediately

returns it to the application.
 Otherwise, the request is scheduled and an hResult of WFS_SUCCESS is immediately returned to the

XFS Manager, which immediately returns it to the application. This informs the application that the
request has been accepted and is being processed.

 Upon completion of the deferred request, a completion message is posted to the application's window.
This message points to the structure that includes the hResult indicating the completion status of the
request.

 Synchronous API
 Since a synchronous API call is translated by the XFS Manager to an asynchronous SPI, the service

provider behaves the same as in asynchronous API processing. Specifically, the service provider
performs any validations which can be processed immediately.

 If an error is detected, the service provider returns the hResult to the XFS Manager, which immediately
returns it to the application.

 Otherwise, the request is scheduled and an hResult of WFS_SUCCESS is immediately returned to the
XFS Manager, indicating that the request has been accepted and is being processed.

 Upon completion of the deferred request, a completion message is posted to the XFS Manager window.
The XFS Manager retrieves the hResult from the structure pointed to by the message and returns it to
the application.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 21

3.11 Notification Mechanisms — Registering for Events

The WFSRegister and WFSDeregister functions (and their asynchronous counterparts) are used to register and
deregister the window procedures which are to receive Windows messages when particular unsolicited,
asynchronous events occur, either during request processing or at other times. In other words, they are used to
enable or disable the reception of event notifications. By providing notifications of this type to applications, the
requirement to poll for status is removed, and a simple method for implementing "monitoring" applications is
provided. Each WFSRegister call specifies a service handle (hService), one or more event classes, and an
application window handle (hWnd) which is to receive all the messages of the specified class(es). The
corresponding SPI functions, WFPRegister and WFPDeregister, implement the API functions.

There are four classes of events:
 SERVICE_EVENTS
 USER_EVENTS
 SYSTEM_EVENTS
 EXECUTE_EVENTS

For the first three of these event classes, if a class is being monitored and an event occurs in that class, a message
is broadcast to every hWnd registered for that class, specifying the service identified by the hService handle.
The events are generated when:
 the service status changes (SERVICE_EVENTS), e.g., a printer is suspended or is no

longer available.
 the service needs an operation from the user to take place (USER_EVENTS), e.g., a

device needs “abnormal” attention, such as adding paper or toner to a printer.
 a system event occurs (SYSTEM_EVENTS), e.g., a hardware error occurs, a version

negotiation fails, the network is no longer available or there is no more disk space.

The EXECUTE_EVENTS class is different from the other three. These are events which occur as a normal part
of processing an WFSExecute command. Examples include the need to interact with the user or operator to
request an action such as inserting a passbook into a printer, “swiping” a mag stripe card, etc. A message
generated by one of these events is sent only to the application that issued the WFSExecute that caused the
event, even though other applications are registered for EXECUTE_EVENTS. Note that an application must
explicitly register for these events; if it has not, and such an event occurs, the event is not deliverable and the
WFSExecute completes normally.

The logic of WFSRegister is cumulative: for a given service the number of notification messages sent may be
increased by specifying additional event classes. Since the XFS Manager does not keep track of what events the
application is registered for and the logic of the register/deregister mechanism is cumulative, the service
providers are responsible for implementing the logic of this process.

An application requests registration for more than one event class in a single call by using a logical ‘OR’:

Note that services always monitor their resources, regardless of whether any application has registered for event
monitoring or not. Issuing WFSRegister simply causes a service to send notifications to the service provider,
which, in turn, sends notifications to one or more applications.

To communicate to the XFS Manager that it no longer wishes to receive messages in one or more event classes,
an application can cancel any previous registration using the WFSDeregister function. The logic of
WFSRegister and WFSDeregister is symmetric: the application can deregister one or more classes of events
monitored for each window, by properly specifying them in the parameter list. To deregister completely (e.g.,
every event class for every window), an application uses NULL event class and window handle values in the
parameter list.

Although the WFSDeregister takes effect immediately, it is possible that messages may be waiting in the
application's message queue. A robust application must therefore be prepared to receive event messages even
after deregistration.

Note that an event notification message always passes the information describing the event to an application by
pointing to a WFSRESULT data structure. After the application has used the data in the structure, it must free

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 22

the memory that the service provider allocated for the WFSRESULT data structure, using the WFSFreeResult
function.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 23

3.12 Application Processes, Threads and Blocking Functions

An application process contains one or more threads of execution. The WOSA/XFS interface is designed to
work in both the single-threaded versions of the Windows operating systems (Windows 3.1 and Windows for
Workgroups) and in the multi-threaded versions of Windows (Windows NT and future versions of Windows).
All references to threads in this document refer to actual threads in multi-threaded Windows environments. In
single-threaded environments, “thread” is synonymous with “process.”

Within the XFS Manager, a blocking (synchronous) function is handled as follows: The XFS Manager initiates
the operation, and then enters a loop in which it dispatches any Windows messages (thus yielding the processor
to other applications as necessary) and checks for the completion of the operation. When the operation
completes, or WFSCancelBlockingCall is invoked, the blocking operation completes with an appropriate result.

When a Windows message is received for a thread for which a blocking operation is in progress, the thread is not
permitted to issue any WOSA/XFS calls during the processing of the message, other than the two specific
functions provided to assist the programmer in this situation:

 WFSIsBlocking determines whether or not a blocking call is in progress.
 WFSCancelBlockingCall cancels a blocking call in progress.

Any other WOSA/XFS function called when a blocking call is in progress fails with the error
WFS_ERR_OP_IN_PROGRESS. This restriction applies to requests for both blocking and non-blocking
operations.

Although this mechanism is sufficient for simple applications, it cannot support those applications which require
more complex message processing while blocked for a synchronous call, such as processing messages relating to
MDI (multiple document interface) events, accelerator key translations, and modeless dialogs. For such
applications, the WOSA/XFS API includes the function WFSSetBlockingHook, which allows the programmer
to define a special routine which will be called instead of the default message dispatch routine described above.
This function gives an application the ability to execute its own routine at blocking time in place of the default
routine. It is not intended as a mechanism for performing general application functions while blocked; it is still
true that the only WOSA/XFS functions that may be called from a blocking routine are WFSIsBlocking and
WFSCancelBlockingCall. The asynchronous versions of the WOSA/XFS functions must be used to allow an
application to continue processing while an operation is in progress.

This mechanism is provided to allow a Windows 3.x or Windows for Workgroups application to make blocking
calls without blocking the rest of the system. Under Windows NT and future multi-threaded, preemptive
versions of Windows, the default blocking action is to suspend the calling application's thread until the request
completes. This is because the system is not blocked by a single application waiting for an operation to
complete, and hence not calling PeekMessage or GetMessage, which are required in the non-preemptive
systems in order to cause the application to yield control.

Therefore, if a single-threaded application is targeted at both single- and multi-threaded environments, and relies
on this functionality, it should install a specific blocking hook by calling WFSSetBlockingHook, even if the
default hook would suffice. This maximizes the portability of applications that depend on the blocking hook
behavior. Programmers who are constrained to use blocking mode—for example, as part of an existing
application which is being ported—should be aware of the semantics of blocking operations.

In the WOSA/XFS implementation in a single-threaded environment, the blocking function operates as follows.
When an application requests a blocking WOSA/XFS API function, the XFS Manager initiates the requested
function and then enters a loop which is equivalent to the following pseudocode:

The DefaultBlockingHook routine is equivalent to:

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 24

GetMessage();

In a multi-threaded environment, the developer of a multi-threaded application must be aware that it is the
responsibility of the application, not the XFS Manager, to synchronize access to a service by multiple threads.
Failure to synchronize calls to a service leads to unpredictable results; for example, if two threads
"simultaneously" issue WFSExecute requests to send data to the same service, there is no guarantee as to the
order in which the data is sent. This is true in general; the application is responsible for coordinating access by
multiple threads to any object (e.g., other forms of I/O, such as file I/O), using appropriate synchronization
mechanisms. The XFS Manager can not, and will not, address these issues. The possible consequences of
failing to observe these rules are beyond the scope of this specification.

In order to allow maximum flexibility in the design and implementation of applications, especially in multi-
threaded environments, the concept of "application identity" can optionally be managed explicitly by the
application developer using the concept of application handles. See Sections 3.5 and 3.8.2 for additional
discussion of this concept.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 25

3.13 Memory Management

WOSA/XFS specifies a protocol for dynamic allocation and release of memory. The general strategy is that the
service providers allocate memory as they need it, and the applications specify when it can be released. This is
implemented using a standard structure (WFSRESULT, defined in Section 8.1) that is always used to pass
information to the applications from the services.

Most service provider function calls are asynchronous, and return their results via a completion message, which
contains a pointer to a WFSRESULT structure, containing the function return status (hResult) and optional data.
The service provider allocates the memory for this structure, using the memory management framework
described below. The deallocation of the structure is done as follows:

 Asynchronous API functions

The application receives the structure from the service provider via a completion message, and is
responsible for deallocation.

 Synchronous WFSExecute, WFSGetInfo and WFSLock API functions

The XFS Manager passes through the WFSRESULT structure to the application as a returned parameter,
and the application is then responsible for deallocation, just as for asynchronous calls.

 All other synchronous API functions

The XFS Manager unpacks the required information from the WFSRESULT structure into returned
parameters to the application, deallocates the structure, and returns to the application.

Four functions are provided by the XFS Manager to implement this protocol: WFMAllocateBuffer,
WFMAllocateMore, WFMFreeBuffer, and WFSFreeResult. Using these functions, two widely applicable
allocation policies are supported:
 a linear allocation policy
 a linked allocation policy

Linear allocation can be used for any flat or contiguously allocated data structure. Such structures are returned
in a single block of allocated memory by the WFMAllocateBuffer function.

Linked allocation can be used as an efficient way of managing complex data structures, permitting the service
provider some flexibility while allowing the application to release the entire structure with a single call. In cases
in which the service provider does not know a priori the size of the result data set, it makes an initial estimate,
and uses WFMAllocateBuffer. If the service provider later determines that more space is required by the data,
new memory is requested using the function WFMAllocateMore, and is automatically linked to the originally
allocated block. The new memory block returned by WFMAllocateMore is, in general, not contiguous with the
root block, and the user of this function should behave in all circumstances as if it is not.

The service provider is free to choose whatever allocation granularity is most convenient. This is completely
transparent to the application or XFS Manager, which frees the entire WFSRESULT structure with a single
WFSFreeResult call (the XFS Manager can also use this call as an indication that it can clean up any other
objects associated with the request). Applications must be sure always to free a returned WFSRESULT
structure. Note that a WFSRESULT structure may be returned even if the service provider has returned an error;
if no WFSRESULT is returned, the pointer to the structure is NULL. A service provider may use also this
facility for its "private" memory management requirements; it then uses the WFMFreeBuffer support function
to free the allocated memory.

NOTE:
Applications and service providers must use the facilities provided by the XFS Manager for XFS-
related memory allocation and deallocation, in order to avoid memory management conflicts
among the applications, the XFS Manager and the service providers.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 26

The following example illustrates how a service provider dynamically allocates a WFSRESULT buffer structure
and an additional data buffer. Note that WFMAllocateMore automatically links these, allowing the application
to free both structures with a single call.













Once the application has retrieved all the information it needs from the WFSRESULT buffer and any associated
structures, it must free the memory, which requires only a single call:







NOTE:
When an application invokes an asynchronous or immediate (i.e., non-blocking) function which
takes a pointer to a memory object as an argument, it is the responsibility of the service provider to
ensure that it no longer needs access to the object before returning control to the application. This
allows the application to release (deallocate) the memory object immediately upon the return from
the call.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 27

4. Application Programming Interface (API) Functions

The functions defined by the WOSA/XFS API are divided into:
 Basic functions that are common to all classes of financial services.
 Administration functions, used for the special purpose of administering services.
 Service-specific commands that are peculiar to a single service class or a group of them and that are sent to

services using basic functions (WFSExecute, WFSAsyncExecute, WFSGetInfo, WFSAsyncGetInfo).

The benefit of grouping functions that are common to all services is evident: programmers can immediately
focus on those operations that are common through all services and thus can easily build a high level model of
interaction with the service providers.

The basic functions are defined in this section, in alphabetical order, except that the asynchronous version of
each command is described immediately following the synchronous version. For example, WFSAsyncExecute
is placed immediately following WFSExecute. The table on the next page lists all the basic functions. This set
of basic functions may be expanded in future releases of this specification, if new functions are determined to be
useful for all service providers.

The administration functions have not yet been fully defined; they are outlined in Appendix A.2 - Planned
Enhancements and Extensions.

The service-specific commands are defined in separate specifications–one for each service class.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 28

The table below summarizes the WOSA/XFS API functions, and the sections in which they are defined.

Section Function Mode Description

4.1 WFSCancelAsyncRequest Immediate Cancel an outstanding asynchronous request

4.2 WFSCancelBlockingCall Immediate Cancel an outstanding blocking operation

4.3 WFSCleanUp Synchronous Terminate a connection between an application
and the XFS Manager

4.4 WFSClose Synchronous Close a session between an application and a
service provider

4.5 WFSAsyncClose Asynchronous The asynchronous version of WFSClose

4.6 WFSCreateAppHandle Immediate Create a new application handle to be used in a
subsequent WFSOpen call

4.7 WFSDeregister Synchronous Disable monitoring of a class of events by an
application

4.8 WFSAsyncDeregister Asynchronous The asynchronous version of WFSDeregister

4.9 WFSDestroyAppHandle Immediate Destroy the specified application handle

4.10 WFSExecute Synchronous Send service-specific commands to a service
provider

4.11 WFSAsyncExecute Asynchronous The asynchronous version of WFSExecute

4.12 WFSFreeResult Immediate Request the XFS Manager to free a result buffer

4.13 WFSGetInfo Synchronous Retrieve service-specific information from a
service provider

4.14 WFSAsyncGetInfo Asynchronous The asynchronous version of WFSGetInfo

4.16 WFSIsBlocking Immediate Determine if a blocking call is in progress

4.17 WFSLock Synchronous Establish exclusive control by an application of a
service

4.18 WFSAsyncLock Asynchronous The asynchronous version of WFSLock

4.19 WFSOpen Synchronous Open a session between an application and a
service provider

4.20 WFSAsyncOpen Asynchronous The asynchronous version of WFSOpen

4.21 WFSRegister Synchronous Enable monitoring of a class of events by an
application

4.22 WFSAsyncRegister Asynchronous The asynchronous version of WFSRegister

4.23 WFSSetBlockingHook Immediate Install an application-specific blocking routine

4.24 WFSStartUp Immediate Initiate a connection between an application and
the XFS Manager

4.25 WFSUnhookBlockingHook Immediate Restore the default blocking routine

4.26 WFSUnlock Synchronous Release exclusive control by an application of a
service

4.27 WFSAsyncUnlock Asynchronous The asynchronous version of WFSUnlock

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 29

4.1 WFSCancelAsyncRequest

HRESULT WFSCancelAsyncRequest(hService, RequestID)

Cancels the specified (or every) asynchronous request being performed on the specified service, before its (their)
completion.

Parameters HSERVICE hService
Handle to the service as returned by WFSOpen or WFSAsyncOpen.

 REQUESTID RequestID
The request identifier for the request to be canceled, as returned by the original function call
(NULL to cancel all).

Mode Immediate

Comments If the RequestID parameter is set to NULL, the command will cancel all asynchronous
requests that are in progress using the specified hService.

 A previously initiated asynchronous request is canceled prior to completion by issuing the
WFSCancelAsyncRequest function, specifying the request identifier returned by the
asynchronous function. This function is immediate with respect to its calling application, but
the cancellation process is inherently asynchronous. On completion, the specified request (or
all requests) will have finished, with a completion message indicating a status of
WFS_ERR_CANCELED, unless the cancel request was received by the service after the
request had completed. Thus, WFSCancelAsyncRequest is not guaranteed to stop all
asynchronous commands: normal completion messages may still be posted after the cancel. A
robust application that uses asynchronous commands should be designed to accept these
messages even after a cancel is issued.

 The cancellation applies not only to the XFS Manager level, but also to the service provider
level. The request is passed through the SPI, and the service provider normally then also
cancels any physical I/O or other device operation in progress, in the appropriate manner for
the device or service.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_REQ_ID
The RequestID parameter does not correspond to an outstanding request on the service.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

See also WFSAsyncExecute

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 30

4.2 WFSCancelBlockingCall

HRESULT WFSCancelBlockingCall(dwThreadID)

Cancels a blocking operation for the specified thread, if one is in progress.

Parameters DWORD dwThreadID
Identifies the thread for which the blocking operation is to be canceled; a NULL value
indicates the calling thread.

Mode Immediate

Comments This function is used to cancel a blocking call (synchronous request) that is in progress. Since
a thread may have only one blocking call in progress at any time, WFSIsBlocking and
WFSCancelBlockingCall are the only WOSA/XFS functions allowed with respect to a thread
when it has a blocking call in progress.

 The application that issued the blocking call receives a WFS_ERR_CANCELED return code
if the operation is successfully canceled.

 The cancellation applies not only to the XFS Manager level, but also to the service provider
level. The request is passed through the SPI, and the service provider normally then also
cancels any physical I/O or other device operation in progress, in the appropriate manner for
the device or service.

 Note: the cancel request is accepted and is honored as soon as all Windows messages have
been removed from the message queue (i.e. GetMessage returns no more messages). Refer to
WFSSetBlockingHook for more information.

Error Codes If the function return is not WFS_SUCCESS, it is the following error condition:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_NO_BLOCKING_CALL
There is no outstanding blocking call for the specified thread.

WFS_ERR_NO_SUCH_THREAD
The specified thread does not exist.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

See also WFSSetBlockingHook, WFSIsBlocking, WFSCancelAsyncRequest

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 31

4.3 WFSCleanUp

HRESULT WFSCleanUp()

Disconnects an application from the XFS Manager.

Parameters None

Mode Synchronous

Comments The WFSCleanUp call indicates disconnection of a WOSA/XFS application from the XFS
Manager. This function, for example, frees resources allocated to the specific application.
WFSCleanUp applies to all threads of a multi-threaded application. If WFSClose has not
been issued for one or more service providers, then the XFS Manager will automatically issue
the close(s). Once the WFSCleanUp has been performed, subsequent attempts to issue any
WOSA/XFS function other than WFSStartUp will fail.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

See also WFSStartUp

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 32

4.4 WFSClose

HRESULT WFSClose(hService)

Terminates a session (a series of service requests initiated with the WFSOpen or WFSAsyncOpen function)
between the application and the specified service. The synchronous version of WFSAsyncClose.

Parameters HSERVICE hService
The service handle returned by WFSOpen or WFSAsyncOpen. Matches the close request
to the open request, allowing an application to have multiple sessions open simultaneously
with a single service provider.

Mode Synchronous

Comments WFSClose directs the service to free all resources associated with the series of requests made
using the hService parameter since the WFSOpen that returned it. If there is a blocking call in
progress the close fails. If the service is locked, the close automatically unlocks it. If no
WFSDeregister has been issued, it is automatically performed.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions. Any
service-specific errors that can be returned are defined in the specifications for each service
class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelBlockingCall.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

See also WFSAsyncClose, WFSOpen, WFSDeregister

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 33

4.5 WFSAsyncClose

HRESULT WFSAsyncClose(hService, hWnd, lpRequestID)

Terminates a session (a series of service requests initiated with the WFSOpen or WFSAsyncOpen function)
between the application and the specified service. The asynchronous version of WFSClose.

Parameters HSERVICE hService
The service handle returned by WFSOpen or WFSAsyncOpen. Matches the close request
to the open request, allowing an application to maintain several "open sessions"
simultaneously.

 HWND hWnd
The window handle which is to receive the completion message for this request.

 LPREQUESTID lpRequestID
Pointer to the request identifier for this request (returned parameter).

Mode Asynchronous

Comments See WFSClose.

 The application must call WFSFreeResult to deallocate the WFSRESULT data structure
which is pointed to by the completion message. Note that a WFSRESULT structure may be
returned even if the function completes with an error; see Section 3.13.

Messages WFS_CLOSE_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

The following error condition can be returned via the asynchronous command completion
message, as the hResult from the WFSRESULT structure.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

See also WFSOpen, WFSDeregister

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 34

4.6 WFSCreateAppHandle

HRESULT WFSCreateAppHandle(lphApp)

Requests a new, unique application handle value.

Parameters LPHAPP lphApp
A pointer to the application handle to be created (returned parameter).

Mode Immediate

Comments This function is used by an application to request a unique (within a single system) application
handle from the XFS Manager (to be used in subsequent WFSOpen/WFSAsyncOpen calls).
Note that an application may call this function multiple times in order to create multiple
“application identities” for itself with respect to the WOSA/XFS subsystem. See Sections 3.5
and 3.8.2 for additional discussion.

Error Codes If the function return is not WFS_SUCCESS, it is the following error condition.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

See also WFSDestroyAppHandle, WFSOpen, WFSAsyncOpen

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 35

4.7 WFSDeregister

HRESULT WFSDeregister(hService, dwEventClass, hWndReg)

Discontinues monitoring of the specified message class(es) (or all classes) from the specified hService, by the
specified hWndReg (or all the calling application's hWnd's). The synchronous version of WFSAsyncDeregister.

Parameters HSERVICE hService
Service handle returned by WFSOpen or WFSAsyncOpen. If this value is NULL, and
dwEventClass is SYSTEM_EVENTS, the XFS manager deregisters the application for
those system events generated by the Manager itself.

 DWORD dwEventClass
The class(es) of messages from which the application is deregistering. Specified as a bit
mask that can be a logical OR of the values for multiple classes. A NULL value requests
that all message classes be deregistered from the specified window for this hService.

 HWND hWndReg
The window which has been previously registered to receive notification messages, and is
now to be deregistered. A NULL value requests that all the application's windows be
deregistered from the specified message class(es) for this hService.

Mode Synchronous

Comments The functions of a WFSDeregister request are performed automatically if a WFSClose is
issued without a previous WFSDeregister.

 See section 3.11 for a description of the classes of events that may be monitored.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_CANCELED
The request was canceled by WFSCancelBlockingCall.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_EVENT_CLASS
The dwEventClass parameter specifies one or more event classes not supported by the
service.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWNDREG
The hWndReg parameter is not a valid window handle.

WFS_ERR_NOT_REGISTERED
The specified hWndReg window was not registered to receive messages for any event
classes.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

See also WFSRegister, WFSClose

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 36

4.8 WFSAsyncDeregister

HRESULT WFSAsyncDeregister(hService, dwEventClass, hWndReg, hWnd, lpRequestID)

Discontinues monitoring of the specified message class(es) (or all classes) from the specified hService, by the
specified hWndReg (or all the calling application's hWnd's). The asynchronous version of WFSDeregister.

Parameters HSERVICE hService
Service handle returned by WFSOpen or WFSAsyncOpen. If this value is NULL, and
dwEventClass is SYSTEM_EVENTS, the XFS manager deregisters the application for
those system events generated by the Manager itself.

 DWORD dwEventClass
The class(es) of events from which the application is deregistering. Specified as a bit mask
that can be a logical OR of the values for multiple classes. A NULL value requests that all
event classes be deregistered from the specified window for this hService.

 HWND hWndReg
The window which has been previously registered to receive notification messages, and is
now to be deregistered. A NULL value requests that all the application's windows be
deregistered from the specified message class(es) for this hService.

 HWND hWnd
The window handle which is to receive the completion message for this request.

 LPREQUESTID lpRequestID
Pointer to the request identifier for this request (returned parameter).

Mode Asynchronous

Comments See WFSDeregister.

 The application must call WFSFreeResult to deallocate the WFSRESULT data structure
which is pointed to by the completion message. Note that a WFSRESULT structure may be
returned even if the function completes with an error; see Section 3.13.

Messages WFS_DEREGISTER_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_EVENT_CLASS
The dwEventClass parameter specifies one or more event classes not supported by the
service.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_HWNDREG
The hWndReg parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_REGISTERED
The specified hWndReg window was not registered to receive messages for any event
classes.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 37

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

The following error conditions are returned via the asynchronous command completion
message, as the hResult from the WFSRESULT structure. Any service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

See also WFSRegister, WFSClose

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 38

4.9 WFSDestroyAppHandle

HRESULT WFSDestroyAppHandle(hApp)

Makes the specified application handle invalid.

Parameters HAPP hApp
The application handle to be made invalid.

Mode Immediate

Comments This function is used by an application to indicate to the XFS Manager that it will no longer
use the specified application handle (from a previous WFSCreateAppHandle call). See
WFSCreateAppHandle and Sections 3.5 and 3.8.2 for additional discussion.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_INVALID_APP_HANDLE
The specified application handle is not valid, i.e., was not created by a preceding create call.

See also WFSCreateAppHandle

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 39

4.10 WFSExecute

HRESULT WFSExecute (hService, dwCommand, lpCmdData, dwTimeOut, lppResult)

Sends a service-specific command to a service provider. The synchronous version of WFSAsyncExecute.

Parameters HSERVICE hService
Handle to the service as returned by WFSOpen or WFSAsyncOpen.

 DWORD dwCommand
Command to be executed by the service provider.

 LPVOID lpCmdData
Pointer to a command data structure to be passed to the service provider.

 DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to specify a
request that will wait until completion).

 LPWFSRESULT * lppResult
Pointer to the pointer to the result data structure used to return the results of the execution.
The service provider allocates the memory for this structure.

Mode Synchronous

Comments This function is used to execute service-specific commands. Each class of service includes a
unique set of commands for the given type of device or service; they are defined in the service-
specific command specifications. Each service provider developer is responsible for
recognizing the complete set of commands for a given class, even if the service provider
doesn't support them all. Each command, for each service class, defines a command data
structure and/or a result data structure. See the separate specifications for each service class
for more discussion of these issues, and the definitions of the service-specific commands and
associated data structures.

 The application must call WFSFreeResult to deallocate the WFSRESULT data structure
returned by this function. Note that a WFSRESULT structure may be returned even if the
function completes with an error; see Section 3.13.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions. Any
service-specific errors that can be returned are defined in the specifications for each service
class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelBlockingCall.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_DEV_NOT_READY
The function required device access, and the device was not ready or timed out.

WFS_ERR_HARDWARE_ERROR
The function required device access, and an error occured on the device.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_COMMAND
The dwCommand issued is not supported by this service class.

WFS_ERR_INVALID_DATA
The data structure passed as input parameter contains invalid data.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 40

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_LOCKED
The service is locked under a different hService.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occured on the
software.

WFS_ERR_TIMEOUT
The timeout interval expired.

WFS_ERR_UNSUPP_COMMAND
The dwCommand issued, although valid for this service class, is not supported by this
service provider or device.

See Also WFSAsyncExecute

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 41

4.11 WFSAsyncExecute

HRESULT WFSAsyncExecute(hService, dwCommand, lpCmdData, dwTimeOut, hWnd,
lpRequestID)

Sends a service-specific command to a service provider. The asynchronous version of WFSExecute.

Parameters HSERVICE hService
Handle to the service provider as returned by WFSOpen or WFSAsyncOpen.

 DWORD dwCommand
Command to be executed by the service provider.

 LPVOID lpCmdData
Pointer to the data structure to be passed to the service provider.

 DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to specify a
request that will wait until completion).

 HWND hWnd
The window handle which is to receive the completion message for this request.

 LPREQUESTID lpRequestID
Pointer to the request identifier for this request (returned parameter).

Mode Asynchronous

Comments See WFSExecute.

 The application must call WFSFreeResult to deallocate the WFSRESULT data structure
which is pointed to by the completion message. Note that a WFSRESULT structure may be
returned even if the function completes with an error; see Section 3.13.

Messages WFS_EXECUTE_COMPLETE
WFS_EXECUTE_EVENT

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_COMMAND
The dwCommand issued is not supported by this service class.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

WFS_ERR_UNSUPP_COMMAND
The dwCommand issued, although valid for this service class, is not supported by this
service provider or device.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 42

The following error conditions are returned via the asynchronous command completion
message, as the hResult from the WFSRESULT structure. Any service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_DEV_NOT_READY
The function required device access, and the device was not ready or timed out.

WFS_ERR_HARDWARE_ERROR
The function required device access, and an error occured on the device.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_DATA
The data structure passed as input parameter contains invalid data.

WFS_ERR_LOCKED
The service is locked under a different hService.

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occured on the
software.

WFS_ERR_TIMEOUT
The timeout interval expired.

WFS_ERR_UNSUPP_COMMAND
The dwCommand issued, although valid for this service class, is not supported by this
service provider or device.

See Also WFSCancelAsyncRequest, WFSExecute

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 43

4.12 WFSFreeResult

HRESULT WFSFreeResult (lpResult)

Notifies the XFS Manager that a memory buffer (or linked list of buffers) that was dynamically allocated by a
service provider is to be freed.

Parameters LPWFSRESULT lpResult
Pointer to a WFSRESULT data structure.

Mode Immediate

Comments The WOSA/XFS service providers may allocate memory to send data to an application. This
function is used by the application to deallocate the memory, and the application must call it
when it no longer needs access to the memory. When the applications calls WFSFreeResult,
all memory allocated by the service provider for this result is deallocated. See Section 3.13.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_RESULT
The lpResult parameter is not a pointer to an allocated WFSRESULT structure.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

See Also WFSExecute, WFSAsyncExecute, WFSGetInfo, WFSAsyncGetInfo

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 44

4.13 WFSGetInfo

HRESULT WFSGetInfo(hService, dwCategory, lpQueryDetails, dwTimeOut, lppResult)

Retrieves information from the specified service provider. The synchronous version of WFSAsyncGetInfo.

Parameters HSERVICE hService
Handle to the service provider as returned by WFSOpen or WFSAsyncOpen.

 DWORD dwCategory
Specifies the category of the query (e.g., for a printer, WFS_INF_PTR_STATUS to request
status or WFS_INF_PTR_CAPABILITIES to request capabilities). The available
categories depend on the service class, the service provider and the service. The
information requested can be either static or dynamic, e.g., basic service capabilities (static)
or current service status (dynamic).

 LPVOID lpQueryDetails
Pointer to the data structure to be passed to the service provider, containing further details to
make the query more precise, e.g., a form name. (Many queries have no input parameters,
in which case this pointer is NULL.)

 DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to specify a
request that will wait until completion).

 LPWFSRESULT * lppResult
Pointer to the pointer to the data structure to be filled with the result of the execution. The
service provider allocates the memory for the structure.

Mode Synchronous

Comments The XFS Manager passes the request to the service provider, and since the information may be
stored remotely, the function cannot be immediate. Note that many requests can be satisfied
by the service provider and will therefore complete immediately.

 The definitions of the dwCategory and lpQueryDetails parameters are provided in the service-
specific command sections of this specification. Note that these information retrieval
functions are separate from the other service-specific commands, since those commands can be
executed only via WFSExecute or WFSAsyncExecute, which require that the service be
either locked by the application issuing the command, or unlocked. The GetInfo functions,
however, can be used even when a service is locked by another application.

 The application must call WFSFreeResult to deallocate the WFSRESULT data structure
which is returned by this function. Note that a WFSRESULT structure may be returned even
if the function completes with an error; see Section 3.13.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions. Any
service-specific errors that can be returned are defined in the specifications for each service
class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelBlockingCall.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_DEV_NOT_READY
The function required device access, and the device was not ready or timed out.

WFS_ERR_HARDWARE_ERROR
The function required device access, and an error occured on the device.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 45

WFS_ERR_INVALID_CATEGORY
The dwCategory issued is not supported by this service class.

WFS_ERR_INVALID_DATA
The data structure passed as input parameter contains invalid data.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occured on the
software.

WFS_ERR_TIMEOUT
The timeout interval expired.

WFS_ERR_UNSUPP_CATEGORY
The dwCategory issued, although valid for this service class, is not supported by this service
provider.

See Also WFSAsyncGetInfo

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 46

4.14 WFSAsyncGetInfo

HRESULT WFSAsyncGetInfo(hService, dwCategory, lpQueryDetails, dwTimeOut, hWnd,
lpRequestID)

Retrieves information from the specified service provider. The asynchronous version of WFSGetInfo.

Parameters HSERVICE hService
Handle to the service provider as returned by WFSOpen or WFSAsyncOpen.

 DWORD dwCategory
See WFSGetInfo.

 LPVOID lpQueryDetails
See WFSGetInfo.

 DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to specify a
request that will wait until completion).

 HWND hWnd
The window handle which is to receive the completion message for this request.

 LPREQUESTID lpRequestID
The request identifier for this request (returned parameter).

Mode Asynchronous

Comments See WFSGetInfo. The only difference in the asynchronous version of the function is that the
results (query details) returned to the application (in the WFSRESULT data structure) are
pointed to by the WFS_GETINFO_COMPLETE message sent to the specified hWnd.

 The application must call WFSFreeResult to deallocate the WFSRESULT data structure
which is pointed to by the completion message. Note that a WFSRESULT structure may be
returned even if the function completes with an error; see Section 3.13.

Messages WFS_GETINFO_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_CATEGORY
The dwCategory issued is not supported by this service class.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 47

WFS_ERR_UNSUPP_CATEGORY
The dwCategory issued, although valid for this service class, is not supported by this service
provider.

The following error conditions are returned via the asynchronous command completion
message, as the hResult from the WFSRESULT structure. Any service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_DEV_NOT_READY
The function required device access, and the device was not ready or timed out.

WFS_ERR_HARDWARE_ERROR
The function required device access, and an error occured on the device.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_DATA
The data structure passed as input parameter contains invalid data..

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occured on the
software.

WFS_ERR_TIMEOUT
The timeout interval expired.

See also WFSGetInfo, WFSCancelAsyncRequest

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 48

4.15 WFSIsBlocking

BOOL WFSIsBlocking()

Determines whether a thread has a blocking operation in progress.

Parameters None

Return Value The return value is TRUE if a blocking operation is in progress and FALSE otherwise.

Mode Immediate

Comments Although a call issued on a synchronous (blocking) function appears to an application as
though it blocks, the XFS Manager in fact relinquishes control of the processor to allow other
Windows processes to run. Thus it is possible for an application that issues a blocking call to
be re-entered, depending on the messages it receives. Since the XFS Manager prohibits more
than one outstanding blocking call per thread, an application's message processing routines
need a way to determine whether they have been re-entered while the application is waiting for
an outstanding blocking call to complete. The WFSIsBlocking function provides this
function, allowing an application to detect whether a blocking operation is already in progress,
before it issues another WOSA/XFS request.

 Note that if another WOSA/XFS call is issued in this situation, the XFS Manager returns with
a WFS_ERR_OP_IN_PROGRESS error code. See Section 3.12 for additional discussion.

See also WFSCancelBlockingCall

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 49

4.16 WFSLock

HRESULT WFSLock(hService, dwTimeOut , lppResult)

Establishes exclusive control by the calling application over the specified service. The synchronous version of
WFSAsyncLock.

Parameters HSERVICE hService
Service provider handle as returned by WFSOpen or WFSAsyncOpen.

 DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to specify a
request that will wait until completion).

 LPWFSRESULT * lppResult
Pointer to the pointer to a WFSRESULT data structure (see Comments). The service
provider allocates the memory for this structure.

Mode Synchronous

Comments A service provider can support a "shared" session, in which multiple applications' data are
mixed in the service's I/O stream. More typically, a session is exclusive at any point in time;
all I/O is for a single application. To define an exclusive use of the service provider, a lock
function (synchronous or asynchronous) must be used. See Section 3.8 for more discussion of
the lock concepts and policy.

 The time to complete will depend on whether there is another application that has acquired
exclusive access to the service. Note that trying to lock several services at the same time can
lead to a deadlock. The timeout capability is provided in the API to allow applications to
prevent this.

 lppResult is a pointer to a pointer to a WFSRESULT data structure containing a null-
terminated array of service handles (hService values), specifying any other services that are
already locked by the application (i.e., under the same hApp) , only if those services are part
of a compound device that includes the service being locked, and are interdependent with it.
The returned pointer is NULL if there are no such "associated" services locked. See Section
3.8.2 for more discussion of this subject.

 The application must call WFSFreeResult to deallocate the WFSRESULT data structure, if
there is one. Note that a WFSRESULT structure may be returned even if the function
completes with an error; see Section 3.13.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CANCELED
The request was canceled by WFSCancelBlockingCall.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 50

WFS_ERR_TIMEOUT
The timeout interval expired.

See also WFSAsyncLock, WFSUnlock, WFSCancelBlockingCall

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 51

4.17 WFSAsyncLock

HRESULT WFSAsyncLock(hService, dwTimeOut, hWnd, lpRequestID)

Establishes exclusive control by the calling application over the specified service. The asynchronous version of
WFSLock.

Parameters HSERVICE hService
Handle to the service provider as returned by WFSOpen or WFSAsyncOpen.

 DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to specify a
request that will wait until completion).

 HWND hWnd
The window handle which is to receive the completion message for this request.

 LPREQUESTID lpRequestID
Pointer to the request identifier for this request (returned parameter).

Mode Asynchronous

Comments See WFSLock and Section 3.8.2. In particular, note that if other services are locked as a
result of this call (i.e., because the service specified is part of a compound device), the handles
of these services are returned in the WFSRESULT data structure pointed to by the completion
message.

 The application must call WFSFreeResult to deallocate the WFSRESULT data structure.
Note that a WFSRESULT structure may be returned even if the function completes with an
error; see Section 3.13.

Messages WFS_LOCK_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

The following error conditions are returned via the asynchronous command completion
message, as the hResult from the WFSRESULT structure.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 52

WFS_ERR_TIMEOUT
The timeout interval expired.

See also WFSLock, WFSUnlock, WFSCancelAsyncRequest

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 53

4.18 WFSOpen

HRESULT WFSOpen(lpszLogicalName, hApp, lpszAppID, dwTraceLevel, dwTimeOut,
dwSrvcVersionsRequired, lpSrvcVersion, lpSPIVersion, lphService)

Initiates a session (a series of service requests terminated with the WFSClose function) between the application
and the specified service. The synchronous version of WFSAsyncOpen.

Parameters LPSTR lpszLogicalName
Points to a null-terminated string containing the pre-defined logical name of a service. It is
a high level name such as "SYSJOURNAL1," "PASSBOOKPTR3" or "CASHDISP02," that
is used by the XFS Manager and the service provider solely as a key to obtain the specific
configuration information they need.

 HAPP hApp
The application handle to be associated with the session being opened. If this parameter is
equal to WFS_DEFAULT_HAPP, the session is associated with the calling process as a
whole (i.e., the calling process, not some subset of its threads, is the owner of the session
and its hService). See WFSCreateAppHandle and Sections 3.5 and 3.8.2 for details.

 LPSTR lpszAppID
Points to a null-terminated string containing the application ID; the pointer may be NULL if
the ID is not used. This ID may be used by services in a variety of ways; e.g., it is included
in the SYSTEM_EVENT message for undeliverable events, to aid in finding system
problems

 DWORD dwTraceLevel
See WFMSetTraceLevel. NULL turns off all tracing.

 DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to specify a
request that will wait until completion).

 DWORD dwSrvcVersionsRequired
Specifies the range of versions of the service-specific interface that the application can
support. (See Comments.) The low-order word indicates the highest version of the interface
the application can support; the high-order word indicates the lowest version of the interface
the application can support. In each word, the low-order byte specifies the major version
number and the high-order byte specifies the minor version number (i.e., the numbers before
and after the decimal).
Note: in order to allow intermediate minor revisions (e.g., between 1.10 and 1.20), the
minor version number should always be expressed as two decimal digits, i.e., 1.10, 1.11,
1.20, etc.

 LPWFSVERSION lpSrvcVersion
Pointer to the data structure that is to receive version support information and other details
about the service-specific interface implementation (returned parameter).

 LPWFSVERSION lpSPIVersion
Pointer to the data structure that is to receive version support information and (optionally)
other details about the SPI implementation of the service provider being opened (returned
parameter). This pointer may be NULL if the application is not interested in receiving this
information. See WFPOpen.

 LPHSERVICE lphService
Pointer to the service handle that the XFS Manager assigns to the service on a successful
open; the application uses this handle for communication with the service provider for the
remainder of the session (returned parameter). If a process opens the same service twice,
the XFS Manager generates and returns different hService values.

Mode Synchronous

Comments This function is used by an application to initiate a session with a service; the session is
terminated by WFSClose. After WFSStartUp, an application must use this function (or the

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 54

asynchronous version) to access a service. The request is made in terms of a logical service
name (lpLogicalName) which is mapped by the XFS Manager to a service provider. The XFS
Manager loads the service provider, if necessary, and returns a logical service handle to the
application which is used during the session to refer to the service.

 In order to support future WOSA/XFS implementations with maximum flexibility, two version
negotiations take place in WFSOpen processing. An application specifies in the
dwSrvcVersionsRequired parameter the range of versions of the service-specific interface (as
defined in the separate XFS specifications for specific classes of devices, such as banking
printers and cash dispensers) that it can support. If the range of versions specified by the
application overlaps the range of versions that the service provider’s implementation can
support, the call succeeds. Otherwise the call fails. (The other negotiation that takes place
during the open process is between the XFS Manager and the service provider regarding the
SPI level. See WFPOpen for details.)

 Information describing the actual service provider implementation is returned in the
WFSVERSION data structure (defined in Section 8.2). In particular, it returns the version the
service provider expects the application to use (the highest common version), as well as the
lowest and highest versions it is capable of. If the call fails, WFSVERSION is still returned,
to help with analysis of the failure.

 The version numbers refer to the complete interface specification: the service-specific
WFSExecute and WFSGetInfo commands, parameters, data structures, error codes, and
messages. If there are any changes to these, the version number should be changed.

 This version negotiation allows a WOSA/XFS application and a service provider to operate
successfully if there is any overlap in their versions. The following chart gives examples of
how WFSOpen works in conjunction with different application and service provider versions:

Application
version(s)

Service Provider
version(s)

Return status from WFSOpen Result

1.00 1.00 WFS_SUCCESS use 1.00
1.00 - 2.10 1.00 WFS_SUCCESS use 1.00
1.11 1.00 - 2.00 WFS_SUCCESS use 1.11
2.11 - 3.00 1.00 - 2.20 WFS_SUCCESS use 2.20
1.00 2.20 - 3.00 WFS_ERR_SRVC_VERS_TOO_LOW fails
1.11 - 3.00 1.00 WFS_ERR_SRVC_VERS_TOO_HIGH fails

 Note that a version negotiation error also generates a system event (see Section 9.7).

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CANCELED
The request was canceled by WFSCancelBlockingCall.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_DEV_NOT_READY
The function required device access, and the device was not ready or timed out.

WFS_ERR_HARDWARE_ERROR
The function required device access, and an error occured on the device.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_APP_HANDLE
The specified application handle is not valid, i.e., was not created by a preceding create call.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_INVALID_SERVPROV
The file containing the service provider is invalid or corrupted.

WFS_ERR_INVALID_TRACELEVEL
The dwTraceLevel parameter does not correspond to a valid trace level or set of levels.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 55

WFS_ERR_NO_SERVPROV
The file containing the service provider does not exist.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

WFS_ERR_SERVICE_NOT_FOUND
The logical name is not a valid service provider name.

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occured on the
software.

WFS_ERR_SPI_VER_TOO_HIGH
The range of versions of WOSA/XFS SPI support requested by the XFS Manager is higher
than any supported by the service provider for the logical service being opened.

WFS_ERR_SPI_VER_TOO_LOW
The range of versions of WOSA/XFS SPI support requested by the a XFS Manager is lower
than any supported by the service provider for the logical service being opened.

WFS_ERR_SRVC_VER_TOO_HIGH
The range of versions of the service-specific interface support requested by the application
(in the dwSrvcVersionsRequired parameter of this call) is higher than any supported by the
service provider for the logical service being opened.

WFS_ERR_SRVC_VER_TOO_LOW
The range of versions of the service-specific interface support requested by the application
(in the dwSrvcVersionsRequired parameter of this call) is lower than any supported by the
service provider for the logical service being opened.

WFS_ERR_TIMEOUT
The timeout interval expired.

WFS_ERR_VERSION_ERROR_IN_SRVC
Within the service, a version mismatch of two modules occurred.

See also WFSAsyncOpen, WFSClose, WFSCreateAppHandle

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 56

4.19 WFSAsyncOpen

HRESULT WFSAsyncOpen(lpszLogicalName, hApp, lpszAppID, dwTraceLevel, dwTimeOut,
lphService, hWnd, dwSrvcVersionsRequired, lpSrvcVersion,
lpSPIVersion, lpRequestID)

Initiates a session (a series of service requests terminated with the WFSClose or WFSAsyncClose function)
between the application and the specified service. The asynchronous version of WFSOpen.

Parameters LPSTR lpszLogicalName
See WFSOpen.

 HAPP hApp
The application handle to be associated with the session being opened.
See WFSOpen, WFSCreateAppHandle and Sections 3.5 and 3.8.2 for details.

 LPSTR lpszAppID
Points to a null-terminated string containing the application ID. See WFSOpen.

 DWORD dwTraceLevel
See WFMSetTraceLevel. NULL turns off all tracing.

 DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to specify a
request that will wait until completion).

 LPHSERVICE lphService
Pointer to the service handle (returned parameter).

 HWND hWnd
The window handle which is to receive the completion message for this request.

 DWORD dwSrvcVersionsRequired
See WFSOpen.

 LPWFSVERSION lpSrvcVersion
See WFSOpen (returned parameter).

 LPWFSVERSION lpSPIVersion
See WFSOpen (returned parameter).

 LPREQUESTID lpRequestID
Pointer to the request identifier for this request (returned parameter).

Mode Asynchronous

Comments See WFSOpen.

 The application must call WFSFreeResult to deallocate the WFSRESULT data structure
which is pointed to by the completion message. Note that a WFSRESULT structure may be
returned even if the function completes with an error; see Section 3.13.

Messages WFS_OPEN_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_APP_HANDLE
The specified application handle is not valid, i.e., was not created by a preceding create call.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 57

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_INVALID_SERVPROV
The file containing the service provider is invalid or corrupted.

WFS_ERR_INVALID_TRACELEVEL
The dwTraceLevel parameter does not correspond to a valid trace level or set of levels.

WFS_ERR_NO_SERVPROV
The file containing the service provider does not exist.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

WFS_ERR_SERVICE_NOT_FOUND
The logical name is not a valid service provider name.

WFS_ERR_SPI_VER_TOO_HIGH
The range of versions of WOSA/XFS SPI support requested by the XFS Manager is higher
than any supported by the service provider for the logical service being opened.

WFS_ERR_SPI_VER_TOO_LOW
The range of versions of WOSA/XFS SPI support requested by the a XFS Manager is lower
than any supported by the service provider for the logical service being opened.

WFS_ERR_SRVC_VER_TOO_HIGH
The range of versions of the service-specific interface support requested by the application
(in the dwSrvcVersionsRequired parameter of this call) is higher than any supported by the
service provider for the logical service being opened.

WFS_ERR_SRVC_VER_TOO_LOW
The range of versions of the service-specific interface support requested by the application
(in the dwSrvcVersionsRequired parameter of this call) is lower than any supported by the
service provider for the logical service being opened.

WFS_ERR_VERSION_ERROR_IN_SRVC
Within the service, a version mismatch of two modules occurred.

The following error conditions are returned via the asynchronous command completion
message, as the hResult from the WFSRESULT structure. Any service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_DEV_NOT_READY
The function required device access, and the device was not ready timed out.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_HARDWARE_ERROR
The function required device access, and an error occured on the device.

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occured on the
software.

WFS_ERR_TIMEOUT
The timeout interval expired.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 58

WFS_ERR_VERSION_ERROR_IN_SRVC
Within the service, a version mismatch of two modules occurred.

See also WFSOpen, WFSClose, WFSCreateAppHandle, WFSCancelAsyncRequest,
WFMSetTraceLevel

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 59

4.20 WFSRegister

HRESULT WFSRegister(hService, dwEventClass, hWndReg)

Enables event monitoring for the specified service by the specified window; all messages of the specified
class(es) are sent to the window specified in the hWndReg parameter. The synchronous version of
WFSAsyncRegister.

Parameters HSERVICE hService
Handle to the service provider as returned by WFSOpen or WFSAsyncOpen. If this value
is NULL, and dwEventClass is SYSTEM_EVENTS, the XFS manager registers the
application for those system events generated by the Manager itself.

 DWORD dwEventClass
The class(es) of events for which the application is registering. Specified as a set of bit
masks that are logically ORed together into this parameter.

 HWND hWndReg
The window handle which is to be registered to receive the specified messages.

Mode Synchronous

Comments Issuing a WFSRegister for a service enables event monitoring on that service. WFSRegister
calls can be cumulative for the same window. For example, to receive notification for both
system and user events, the application can call WFSRegister with both SYSTEM_EVENTS
and USER_EVENTS, as follows:

 or call them in two phases:

 To cancel notifications use WFSDeregister.

 Note that the service provider always monitors the service, regardless of whether an
application has registered for event monitoring. Issuing WFSRegister simply causes the
service provider to post messages to the application in addition to handling the messages itself.
See the discussion in Section 3.11.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CANCELED
The request was canceled by WFSCancelBlockingCall.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_EVENT_CLASS
The dwEventClass parameter specifies one or more event classes not supported by the
service.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWNDREG
The hWndReg parameter is not a valid window handle.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 60

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

See also WFSAsyncRegister, WFSDeregister, WFSAsyncDeregister

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 61

4.21 WFSAsyncRegister

HRESULT WFSAsyncRegister(hService, dwEventClass, hWndReg, hWnd, lpRequestID)

Enables event monitoring for the specified service by the specified window; all messages of the specified
class(es) are sent to the window specified in the hWndReg parameter. The asynchronous version of
WFSRegister.

Parameters HSERVICE hService
Handle to the service provider as returned by WFSOpen or WFSAsyncOpen. If this value
is NULL, and dwEventClass is SYSTEM_EVENTS, the XFS manager registers the
application for those system events generated by the Manager itself.

 DWORD dwEventClass
See WFSRegister.

 HWND hWndReg
The window handle which is to be registered to receive the specified messages.

 HWND hWnd
The window handle which is to receive the completion message for this request.

 LPREQUESTID lpRequestID
Pointer to the request identifier for this request (returned parameter).

Mode Asynchronous

Comments See WFSRegister.

 The application must call WFSFreeResult to deallocate the WFSRESULT data structure
pointed to by the completion message. Note that a WFSRESULT structure may be returned
even if the function completes with an error; see Section 3.13.

Messages WFS_REGISTER_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_EVENT_CLASS
The dwEventClass parameter specifies one or more event classes not supported by the
service.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_HWNDREG
The hWndReg parameter is not a valid window handle.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 62

The following error conditions can be returned via the asynchronous command completion
message, as the hResult from the WFSRESULT structure.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

See also WFSRegister, WFSDeregister, WFSAsyncDeregister

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 63

4.22 WFSSetBlockingHook

HRESULT WFSSetBlockingHook(lpBlockFunc, lppPrevFunc)

Establishes an application-specific blocking routine.

Parameters XFSBLOCKINGHOOK lpBlockFunc
Pointer to the procedure instance address of the blocking routine to be installed.

 LPXFSBLOCKINGHOOK lppPrevFunc
Returned pointer to a pointer to the procedure instance of the previously installed blocking
routine.

Mode Immediate

Comments When this function is successfully issued by an application, it returns a pointer to the
previously installed blocking routine. The application may save this pointer so that it can be
restored if desired. If such “nesting” is not required, the application can discard this value and
simply use the WFSUnhookBlockingHook function to restore the default routine at any time.

 See Section 3.12 for a complete discussion.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

See also WFSUnhookBlockingHook, WFSCancelBlockingCall, WFSIsBlocking

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 64

4.23 WFSStartUp

HRESULT WFSStartUp(dwVersionsRequired, lpWFSVersion)

Establishes a connection between an application and the XFS Manager.

Parameters DWORD dwVersionsRequired
Specifies the range of versions of the XFS Manager that the application can support. The
low-order word indicates the highest version of the XFS Manager the application can
support; the high-order word indicates the lowest version of the XFS Manager the
application can support. In each word, the low-order byte specifies the major version
number and the high-order byte specifies the minor version number (i.e., the numbers before
and after the decimal).
Note: in order to allow intermediate minor revisions (e.g., between 1.10 and 1.20), the
minor version number should always be expressed as two decimal digits, i.e., 1.10, 1.11,
1.20, etc.

 LPWFSVERSION lpWFSVersion
Pointer to the data structure that is to receive version support information and other details
about the current WOSA/XFS implementation (returned parameter).

Mode Immediate

Comments This function is used by an application to register itself with the XFS Manager and specify the
version(s) of the WOSA/XFS API specification it can use, and returns information on the
specific WOSA/XFS implementation. It must be the first WOSA/XFS API function called by
an application. An application may only issue further WOSA/XFS functions after a successful
WFSStartUp has completed.

 In order to support future WOSA/XFS implementations with maximum flexibility, a version
negotiation process takes place in WFSStartUp. An application specifies in the
dwVersionsRequired parameter the range of versions of the WOSA/XFS API specification
which it can support. If the range of versions specified by the application overlaps the range
of versions that the current implementation of XFS Manager can support, the call succeeds.
Otherwise the call fails.

 Information describing the actual WOSA/XFS implementation is returned by the XFS
Manager in the WFSVERSION data structure (defined in Section 8.2). In particular, it returns
the version it expects the application to use (the highest common version), as well as the
lowest and highest versions it is capable of. If the call fails, WFSVERSION is still returned,
to help with analysis of the failure.

 The version numbers refer to the API specification, specifically functions, parameters, data
structures, error codes, and messages. If there are any changes to these, the version number
should be changed.

 This version negotiation allows a WOSA/XFS application and the XFS Manager to operate
successfully if there is any overlap in their versions. The following chart gives examples of
how WFSStartUp works in conjunction with different application and XFS Manager versions:

Application
versions

XFS Manager
versions

Return status from WFSStartUp Result

1.00 1.00 WFS_SUCCESS use 1.00
1.00 - 2.10 1.00 WFS_SUCCESS use 1.00
1.11 1.00 - 2.00 WFS_SUCCESS use 1.11
2.11 - 3.00 1.00 - 2.20 WFS_SUCCESS use 2.20
1.00 2.20 - 3.00 WFS_ERR_API_VERS_TOO_LOW fails
1.11 - 3.00 1.00 WFS_ERR_API_VERS_TOO_HIGH fails

 Note that a version negotiation error also generates a system event (see Section 9.7).

 After making its last WOSA/XFS call, an application must call WFSCleanUp to allow the
XFS Manager to release any resources allocated for the application.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 65

Error Codes The return value indicates whether the application was registered successfully (i.e., the XFS
Manager can support requests from the application). If the function was successful, the
returned value is WFS_SUCCESS; if not, it is one of the following error conditions:

WFS_ERR_ALREADY_STARTED
A WFSStartUp has already been issued by the application, without an intervening
WFSCleanUp.

WFS_ERR_API_VER_TOO_HIGH
The range of versions of WOSA/XFS API support requested by the application is higher
than any supported by this particular WOSA/XFS implementation.

WFS_ERR_API_VER_TOO_LOW
The range of versions of WOSA/XFS API support requested by the application is lower than
any supported by this particular WOSA/XFS implementation.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

See also WFSCleanUp

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 66

4.24 WFSUnhookBlockingHook

HRESULT WFSUnhookBlockingHook()

Removes any previous blocking hook that had been installed and reinstalls the default blocking mechanism.

Parameters None.

Mode Immediate

Comments The function will always install the default routine, not the previous routine. If an application
wishes to nest blocking hook routines—i.e., to establish a temporary blocking call and then
revert to the previous mechanism—it must save and restore the value returned by the
WFSSetBlockingHook function. See Section 3.12.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

See also WFSSetBlockingHook

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 67

4.25 WFSUnlock

HRESULT WFSUnlock(hService)

Releases a service that has been locked by a previous WFSLock or WFSAsyncLock function. The
synchronous version of WFSAsyncUnlock.

Parameters HSERVICE hService
Handle to the service provider as returned by WFSOpen or WFSAsyncOpen.

Mode Synchronous

Comments See Section 3.8.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_CANCELED
The request was canceled by WFSCancelBlockingCall.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_NOT_LOCKED
The application requesting a service be unlocked had not previously performed a successful
WFSLock or WFSAsyncLock.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

See also WFSAsyncUnlock, WFSLock, WFSAsyncLock

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 68

4.26 WFSAsyncUnlock

HRESULT WFSAsyncUnlock(hService, hWnd, lpRequestID)

Releases a service that has been locked by a previous WFSLock or WFSAsyncLock function. The
asynchronous version of WFSUnlock.

Parameters HSERVICE hService
Handle to the service provider as returned by WFSOpen or WFSAsyncOpen.

 HWND hWnd
The window handle which is to receive the completion message for this request.

 LPREQUESTID lpRequestID
Pointer to the request identifier for this request (returned parameter).

Mode Aynchronous

Comments See WFSUnlock and Section 3.8.

 The application must call WFSFreeResult to deallocate the WFSRESULT data structure
which is pointed to by the completion message. Note that a WFSRESULT structure may be
returned even if the function completes with an error; see Section 3.13.

Messages WFS_UNLOCK_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

The following error conditions are returned via the asynchronous command completion
message, as the hResult from the WFSRESULT structure:

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_NOT_LOCKED
The application requesting a service be unlocked had not previously performed a successful
WFSLock or WFSAsyncLock.

See also WFSUnlock, WFSLock, WFSAsyncLock

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 69

5. Service Provider Interface (SPI) Functions

The service provider functions are described in the following sections, in alphabetical order. The table below
shows the SPI functions, the sections in which they are defined, their modes, and the API functions they
implement.

Sectio
n

WOSA/XFS SPI Mode WOSA/XFS API Mode

5.1 WFPCancelAsyncRequest Immediate WFSCancelAsyncRequest Immediate

5.1 WFPCancelAsyncRequest Immediate WFSCancelBlockingCall Immediate

 (none) - WFSCleanUp Synchronous

5.2 WFPClose Asynchronous WFSClose Synchronous

5.2 WFPClose Asynchronous WFSAsyncClose Asynchronous

 (none) - WFSCreateAppHandle Immediate

5.3 WFPDeregister Asynchronous WFSDeregister Synchronous

5.3 WFPDeregister Asynchronous WFSAsyncDeregister Asynchronous

 (none) - WFSDestroyAppHandle Immediate

5.4 WFPExecute Asynchronous WFSExecute Synchronous

5.4 WFPExecute Asynchronous WFSAsyncExecute Asynchronous

 (none) - WFSFreeResult Immediate

5.5 WFPGetInfo Asynchronous WFSGetInfo Synchronous

5.5 WFPGetInfo Asynchronous WFSAsyncGetInfo Asynchronous

 (none) - WFSIsBlocking Immediate

5.6 WFPLock Asynchronous WFSLock Synchronous

5.6 WFPLock Asynchronous WFSAsyncLock Asynchronous

5.7 WFPOpen Asynchronous WFSOpen Synchronous

5.7 WFPOpen Asynchronous WFSAsyncOpen Asynchronous

5.8 WFPRegister Asynchronous WFSRegister Synchronous

5.8 WFPRegister Asynchronous WFSAsyncRegister Asynchronous

 (none) - WFSSetBlockingHook Immediate

5.9 WFPSetTraceLevel Immediate (none) -

 (none) - WFSStartUp Immediate

 (none) - WFSUnhookBlockingHook Immediate

5.10 WFPUnloadService

5.11 WFPUnlock Asynchronous WFSUnlock Synchronous.

5.11 WFPUnlock Asynchronous WFSAsyncUnlock Asynchronous

Note that in this section device drivers and devices are mentioned frequently, instead of service providers and
services. This is due primarily to the fact that access to financial peripheral devices is the first category of
financial services being addressed by the BSVC. However, note that in the future other financial services will be
part of the WOSA Extensions to Financial Services, and will also use these interfaces, with additions as
necessary. See Appendix A for more on this subject.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 70

5.1 WFPCancelAsyncRequest

HRESULT WFPCancelAsyncRequest(hService, RequestID)

Cancels the specified (or every) asynchronous request being performed on the specified service provider, before
its (their) completion.

Parameters HSERVICE hService
Handle to the service provider.

 REQUESTID RequestID
The request identifier (NULL to cancel all requests for the specified hService).

Mode Immediate. Although the cancellation process itself is asynchronous, the completion
message(s) are associated with the original request, not the cancel request (even if they
indicate a WFS_ERR_CANCELED status).

Comments If the RequestID parameter is set to NULL, the command will cancel all asynchronous
requests on the specified service that are in progress on behalf of the calling application.

 A previously initiated asynchronous request is canceled prior to completion by issuing the
WFSCancelAsyncRequest function, specifying the request identifier returned by the
asynchronous function. This function is immediate with respect to its calling application, but
the cancellation process is inherently asynchronous. On completion, the specified request (or
all the requests) will have finished, with a completion message indicating a status of
WFS_ERR_CANCELED, unless the cancel request was made after the request had completed.

 The cancellation applies to the service provider level. The request is passed through the SPI,
and the service provider normally then also cancels any physical I/O or other device operation
in progress, in the appropriate manner for the device or service.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_REQ_ID
The RequestID parameter does not correspond to an outstanding request on the service.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 71

5.2 WFPClose

HRESULT WFPClose(hService, hWnd, ReqID)

Terminates a session (a series of service requests initiated with the WFPOpen SPI function) between the XFS
Manager and the specified service provider.

Parameters HSERVICE hService
Handle to the service provider.

 HWND hWnd
The window handle which is to receive the completion message for this request.

 REQUESTID ReqID
Request identification number.

Mode Asynchronous

Comments WFPClose directs the service to free all resources associated with the series of requests made
using the hService parameter. If the service is locked by the application, the close
automatically unlocks it. If no WFPDeregister has been issued, it is automatically performed.

 See WFPOpen and Section 3.6 for further discussion.

Messages WFS_CLOSE_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated. The service-specific errors that
can be returned are defined in the specifications for each service class.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

The following error conditions are returned via the asynchronous command completion
message, as the hResult from the WFSRESULT structure. Any service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 72

5.3 WFPDeregister

HRESULT WFPDeregister(hService, dwEventClass, hWndReg, hWnd, ReqID)

Discontinues monitoring of the specified message class(es) from the specified service provider, by the specified
hWndReg (or all hWnd's).

Parameters HSERVICE hService
Handle to the service provider

 DWORD dwEventClass
The class(es) of messages from which the application is deregistering. Specified as a set of
bit masks that can be logically ORed together. A NULL value requests that all message
classes be deregistered from the specified window for this service provider.

 HWND hWndReg
The window to which notification messages are posted. A NULL value requests that all the
application's windows be deregistered from the specified message class(es) for this hService.

 HWND hWnd
The window handle which is to receive the completion message for this request.

 REQUESTID ReqID
Request identification number.

Mode Asynchronous

Comments WFPDeregister does not stop asynchronous command completion messages from being
posted; a robust application should be designed to accept these messages even after a
deregister is issued.

 A WFPDeregister os performed automatically if a WFPClose is issued without a previous
WFPDeregister.

 To deregister all messages for all hWnds, the call supplies NULL values for both the
dwEventClass and hWnd parameters.

 See the WFPRegister function for a description of the types of events that may be monitored.

Messages WFS_DEREGISTER_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated. Any service-specific errors that
can be returned are defined in the specifications for each service class.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_EVENT_CLASS
The dwEventClass parameter specifies one or more event classes not supported by the
service.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_HWNDREG
The hWndReg parameter is not a valid window handle.

WFS_ERR_NOT_REGISTERED
The specified hWndReg window was not registered to receive messages for any event
classes.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 73

The following error condition is returned via the asynchronous command completion message,
as the hResult from the WFSRESULT structure. Any service-specific errors that can be
returned are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 74

5.4 WFPExecute

HRESULT WFPExecute(hService, dwCommand, lpCmdData, dwTimeOut, hWnd, ReqID)

Sends asynchronous service class specific commands to a service provider.

Parameters HSERVICE hService
Handle to the service provider.

 DWORD dwCommand
Command to be executed.

 LPVOID lpCmdData
Pointer to the data structure to be passed.

 DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to specify a
request that will wait until completion).

 HWND hWnd
The window handle which is to receive the completion message for this request.

 REQUESTID ReqID
Request identification number.

Mode Asynchronous

Comments See WFSExecute.

Messages WFS_EXECUTE_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated. Any service-specific errors that
can be returned are defined in the specifications for each service class.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_COMMAND
The dwCommand issued is not supported by this service class.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_UNSUPP_COMMAND
The dwCommand issued, although valid for this service class, is not supported by this
service provider.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 75

The following error conditions are returned via the asynchronous command completion
message, as the hResult from the WFSRESULT structure. Any service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_DEV_NOT_READY
The function required device access, and the device was not ready or timed out.

WFS_ERR_HARDWARE_ERROR
The function required device access, and an error occured on the device.

WFS_ERR_INVALID_DATA
The data structure passed as input parameter contains invalid data..

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_LOCKED
The service is locked under a different hService.

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occured on the
software.

WFS_ERR_TIMEOUT
The timeout interval expired.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 76

5.5 WFPGetInfo

HRESULT WFPGetInfo(hService, dwCategory, lpQueryDetails, dwTimeOut, hWnd, ReqID)

Retrieves various kinds of information from the specified service provider.

Parameters HSERVICE hService
Handle to the service provider.

 DWORD dwCategory
Specifies the category of the query (e.g., for a printer, WFS_INF_PTR_STATUS to request
status or WFS_INF_PTR_CAPABILITIES to request capabilities). The available
categories depend on the service class, the service provider and the service. The
information requested can be either static or dynamic, e.g., basic service capabilities (static)
or current service status (dynamic).

 LPVOID lpQueryDetails
Pointer to the data structure to be passed to the service provider, containing further details to
make the query more precise, e.g., a form name. (Many queries have no input parameters,
in which case this pointer is NULL.)

 DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to specify a
request that will wait until completion).

 HWND hWnd
The window handle which is to receive the completion message for this request.

 REQUESTID ReqID
Request identification number.

Mode Asynchronous

Comments The XFS Manager retrieves the information requested from the service provider itself, and,
since the information can be stored remotely, the function cannot be guaranteed to complete
immediately. Note that, typically, requests for generic and class specific categories can
complete immediately. See WFSGetInfo for additional discussion.

 The specifications for the information structures for each service class can be found in the
specifications for the service-specific commmands.

Messages WFS_GETINFO_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated. Any service-specific errors that
can be returned are defined in the specifications for each service class.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_CATEGORY
The dwCategory issued is not supported by this service class.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 77

WFS_ERR_UNSUPP_CATEGORY
The dwCategory issued, although valid for this service class, is not supported by this service
provider.

The following error conditions are returned via the asynchronous command completion
message, as the hResult from the WFSRESULT structure. Any service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_DEV_NOT_READY
The function required device access, and the device was not ready or timed out.

WFS_ERR_HARDWARE_ERROR
The function required device access, and an error occured on the device.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_DATA
The data structure passed as input parameter contains invalid data..

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occured on the
software.

WFS_ERR_TIMEOUT
The timeout interval expired.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 78

5.6 WFPLock

HRESULT WFPLock(hService, dwTimeOut, hWnd, ReqID)

Establishes exclusive control by the calling application over the specified service.

Parameters HSERVICE hService
Handle to the service provider.

 DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to specify a
request that will wait until completion).

 HWND hWnd
The window handle which is to receive the completion message for this request.

 REQUESTID ReqID
Request identification number.

Mode Asynchronous

Comments See WFSLock.

Messages WFS_LOCK_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated. Any service-specific errors that
can be returned are defined in the specifications for each service class.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

The following error conditions are returned via the asynchronous command completion
message, as the hResult from the WFSRESULT structure. Any service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_DEV_NOT_READY
The function required device access, and the device was not ready or timed out.

WFS_ERR_HARDWARE_ERROR
The function required device access, and an error occured on the device.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occured on the
software.

WFS_ERR_TIMEOUT
The timeout interval expired.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 79

5.7 WFPOpen

HRESULT WFPOpen(hService, lpszLogicalName, hApp, lpszAppID, dwTraceLevel,
dwTimeOut, hWnd, ReqID, hProvider, dwSPIVersionsRequired,
lpSPIVersion, dwSrvcVersionsRequired, lpSrvcVersion)

Establishes a connection between the XFS Manager and the service provider that supports the specified service,
and initiates a session (a series of service requests terminated with the WFPClose function).

Parameters HSERVICE hService
The service handle to be associated with the session being opened..

 LPSTR lpszLogicalName
Points to a null-terminated string containing the pre-defined logical name of a service. It is
a high level name such as "SYSJOURNAL1," "PASSBOOKPTR3" or "ATM02," that is
used by the XFS Manager and the service provider as a key to obtain the specific
configuration information they need.

 HAPP hApp
The application handle to be associated with the session being opened.
See WFSCreateAppHandle and Sections 3.5 and 3.8.2 for details.

 LPSTR lpszAppID
Pointer to a null terminated string containing the application ID; the pointer may be NULL
if the ID is not used.

 DWORD dwTraceLevel
See WFPSetTraceLevel.

 DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to specify a
request that will wait until completion).

 HWND hWnd
The window handle which is to receive the completion message for this request.

 REQUESTID ReqID
Request identification number.

 HPROVIDER hProvider
Service provider handle supplied by the XFS Manager – used by the service provider to
identify itself when calling the WFMReleaseDLL function.

 DWORD dwSPIVersionsRequired
Specifies the range of WOSA/XFS SPI versions that the XFS Manager can support. (See
Comments.) The low-order word indicates the highest version the XFS Manager can
support; the high-order word indicates the lowest version the XFS Manager can support. In
each word, the low-order byte specifies the major version number and the high-order byte
specifies the minor version number (i.e., the numbers before and after the decimal).
Note: in order to allow intermediate minor revisions (e.g., between 1.10 and 1.20), the
minor version number should always be expressed as two decimal digits, i.e., 1.10, 1.11,
1.20, etc.

 LPWFSVERSION lpSPIVersion
Pointer to the data structure that is to receive SPI version support information and
(optionally) other details about the SPI implementation (returned parameter).

 DWORD dwSrvcVersionsRequired
Service-specific interface versions required; see dwSPIVersionsRequired above, and
WFSOpen.

 LPWFSVERSION lpSrvcVersion
Pointer to the service-specific interface implementation information; see lpSPIVersion
above, and WFSOpen (returned parameter).

Mode Asynchronous

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 80

Comments This function establishes the connection between the XFS Manager and the service provider,
including version negotiation and passing of implementation information, and initiates a
session between the application and the service. This call is made by the XFS Manager each
time any application issues a WFSOpen or WFSAsyncOpen call to the specified service
(immediately after loading the service provider DLL, if it is not already loaded).

 In order to support future WOSA/XFS implementations with maximum flexibility, two version
negotiations take place in WFPOpen. In the first, the XFS Manager specifies in the
dwSPIVersionsRequired parameter the range of versions of the WOSA/XFS SPI specification
which it can support. If the range of versions specified by the XFS Manager overlaps the
range of versions that the service provider can support, the call succeeds. Otherwise the call
fails.

 The WFSVERSION data structure (described in Section 8.2) is used by the service provider to
return the version of SPI support it expects the XFS Manager to use (the highest common
version), as well as the lowest and highest versions it is capable of. In addition, this structure
is used optionally by the XFS Manager to specify other information about the service provider
implementation. If the call fails, WFSVERSION is still returned, to help with analysis of the
failure.

 The version numbers refer to the SPI specification, specifically functions, parameters, data
structures, error codes, and messages. If there are any changes to these, the version number
should be changed.

 This version negotiation allows the XFS Manager and a service provider to operate
successfully if there is any overlap in their versions. The following chart gives examples of
how WFPOpen works in conjunction with different XFS Manager and service provider
versions:

XFS Manager
versions

Service Provider
versions

Return status from WFPOpen Result

1.00 1.00 WFS_SUCCESS use 1.00
1.00 - 2.10 1.00 WFS_SUCCESS use 1.00
1.11 1.00 - 2.00 WFS_SUCCESS use 1.11
2.11 - 3.00 1.00 - 2.20 WFS_SUCCESS use 2.20
1.00 2.20 - 3.00 WFS_ERR_SPI_VER_TOO_LOW fails
1.11 - 3.00 1.00 WFS_ERR_SPI_VER_TOO_HIGH fails

 The second negotiation is is in relation to the service-specific interface, between the

application program and the service provider. See WFSOpen, Section 4.19, for details.

 Note that a version negotiation error also generates a system event (see Section 9.7).

 Also, see WFSStartUp, Section 4.24.

Messages WFS_OPEN_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated. Any service-specific errors that
can be returned are defined in the specifications for each service class.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 81

WFS_ERR_INVALID_TRACELEVEL
The dwTraceLevel parameter does not correspond to a valid trace level or set of levels.

WFS_ERR_SPI_VER_TOO_HIGH
The range of versions of WOSA/XFS SPI support requested by the XFS Manager is higher
than any supported by this particular service provider.

WFS_ERR_SPI_VER_TOO_LOW
The range of versions of WOSA/XFS SPI support requested by the XFS Manager is lower
than any supported by this particular service provider.

WFS_ERR_SRVC_VER_TOO_HIGH
The range of versions of the service-specific interface support requested by the application
is higher than any supported by the service provider for the logical service being opened.

WFS_ERR_SRVC_VER_TOO_LOW
The range of versions of the service-specific interface support requested by the application
is lower than any supported by the service provider for the logical service being opened.

WFS_ERR_VERSION_ERROR_IN_SRVC
Within the service, a version mismatch of two modules occurred.

The following error conditions are returned via the asynchronous command completion
message, as the hResult from the WFSRESULT structure. The service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_TIMEOUT
The timeout interval expired.

WFS_ERR_VERSION_ERROR_IN_SRVC
Within the service, a version mismatch of two modules occurred.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 82

5.8 WFPRegister

HRESULT WFPRegister(hService, dwEventClass, hWndReg, hWnd, ReqID)

Enables event monitoring for the specified service by the specified hWndReg; all events of the specified class(es)
generate messages to the hWndReg.

Parameters HSERVICE hService
Handle to the service provider.

 DWORD dwEventClass
The class(es) of events for which the application is registering. Specified as a set of bit
masks that can be logically ORed together.

 HWND hWndReg
The window handle which is to be registered to receive the specified messages.

 HWND hWnd
The window handle which is to receive the completion message for this request.

 REQUESTID ReqID
Request identification number.

Mode Asynchronous

Comments WFPDeregister is used to cancel notifications. See WFSRegister.

Messages WFS_REGISTER_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated. Any service-specific errors that
can be returned are defined in the specifications for each service class.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_EVENT_CLASS
The dwEventClass parameter specifies one or more event classes not supported by the
service.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_HWNDREG
The hWndReg parameter is not a valid window handle.

The following error conditions are returned via the asynchronous command completion
message, as the hResult from the WFSRESULT structure. Any service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 83

5.9 WFPSetTraceLevel

HRESULT WFPSetTraceLevel(hService, dwTraceLevel)

Sets the specified trace level(s) at run time, in and/or below the service provider. See WFMSetTraceLevel.

Parameters HSERVICE hService
Handle to the service provider.

 DWORD dwTraceLevel
The level(s) of tracing being requested. See below.

Mode Immediate

Comments Issuing WFPSetTraceLevel for a service enables tracing on that service at various levels.
The predefined trace levels that can be used in this function, with their meanings to the service
provider, are as follows (see WFMSetTraceLevel for the API and support function trace
levels):

 Trace all the SPI calls to the service provider, and notification and event messages generated
by the service provider, that are associated with the specified hService.

 Trace all SPI, notification and event activity of the service provider (the hService parameter
is not relevant to this trace level).

 Other standard trace levels may be defined in the future, and a range of trace level values (the
high order 16 bits of this parameter) is reserved for use by individual service providers.
Example of other functions that may be traced include network messages, interactions between
the service provider and service, and device interface interaction.

 Trace level values can be ORed together in a single dwTraceLevel parameter to request more
than one kind of tracing be started. A NULL value stops all tracing in the service provider.

 If more than one process may be using the trace facility, this function should always be
preceded with the WFMGetTraceLevel function. This value returned by this function is
ORed together with the new trace level(s), and the resulting value is used with
WFMSetTraceLevel, thus adding the new trace level(s) to whatever the existing trace level(s)
had been,

 This function has the highest priority to the service provider; it activates the trace as soon as
possible.

 WFPOpen also includes an option to set these trace levels, to allow the open process itself to
be traced.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_TRACELEVEL
The dwTraceLevel parameter does not correspond to a valid trace level or set of levels.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 84

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

See Also WFMGetTraceLevel, WFSOpen, WFSAsyncOpen

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 85

5.10 WFPUnloadService

HRESULT WFPUnloadService()

Asks the called service provider whether it is OK for the XFS Manager to unload the service provider’s DLL.

Parameters None

Mode Immediate

Comments This function is issued after the XFS Manager has received a WFMReleaseDLL request from
the service provider or during the processing of the WFSCleanUp command. The service
provider returns WFS_SUCCESS only if it has fully “cleaned up,” i.e., has freed any resources
it has allocated, has no separate threads running, etc. If this is not true, it returns the error
below, and initiates or continues the clean up process.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_NOT_OK_TO_UNLOAD
The XFS Manager may not unload the service provider DLL at this time. It will repeat this
request to the service provider until the return is WFS_SUCCESS, or until a new session is
started by an application with this service provider.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 86

5.11 WFPUnlock

HRESULT WFPUnlock(hService, hWnd, ReqID)

Releases a service that has been locked by a previous WFPLock function.

Parameters HSERVICE hService
Handle to the service provider

 HWND hWnd
The window handle which is to receive the completion message for this request.

 REQUESTID ReqID
Request identification number.

Mode Asynchronous

Comments See WFPLock, WFSLock, WFSUnlock and Section 3.9.

Messages WFS_UNLOCK_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated. Any service-specific errors that
can be returned are defined in the specifications for each service class.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

The following error conditions are returned via the asynchronous command completion
message, as the hResult from the WFSRESULT structure. Any service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_NOT_LOCKED
The service to be unlocked is not locked under the calling hService.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 87

6. Support Functions

Support functions are services of the XFS Manager used by service providers and applications. All the functions
are immediate, since they are completely processed inside the XFS Manager, or use only immediate functions
of the service providers.

6.1 WFMAllocateBuffer

HRESULT WFMAllocateBuffer(ulSize, ulFlags, lppvData)

Allocates a memory buffer for the service provider in which to return results.

Parameters ULONG ulSize
Size (in bytes) of the memory to be allocated.

 ULONG ulFlags
Flags, see comments below.

 LPVOID * lppvData
Address of the variable in which the XFS Manager will place the pointer to the allocated
memory.

Comments A service provider must use this call when creating data structures for the XFS Manager or an
application to use, and may use it when allocating memory for its own private use. The flags
can be ORed together, and specify:

WFS_MEM_SHARE Allocates shareable memory.
WFS_MEM_ZEROINIT Initializes memory contents to zero (not required in 32 bit

Windows).

 The application, XFS Manager or service provider then must, in turn, use the WFSFreeResult
or WFMFreeBuffer functions to deallocate the memory.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_OUT_OF_MEMORY
There is not enough memory available to satisfy the request.

See also WFMAllocateMore, WFMFreeBuffer, WFSFreeResult and Section 3.13.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 88

6.2 WFMAllocateMore

HRESULT WFMAllocateMore(ulSize, lpvOriginal, lppvData)

Allocates a memory buffer, linking it to an previously allocated one.

Parameters ULONG ulSize
Size (in bytes) of the memory to be allocated

 LPVOID lpvOriginal
Address of the original buffer to which the newly allocated buffer should be linked

 LPVOID * lppvData
Address of the variable in which the XFS Manager will place the pointer to the newly
allocated memory.

Comments This function allocates an additional memory buffer and link it to one previously allocated by
WFMAllocateBuffer. The returned buffer has the same properties as the previous buffer
(i.e., the WFS_MEM_SHARE and WFS_MEM_ZEROINIT flags) and it can be freed only by
freeing the original buffer (using WFMFreeBuffer or WFSFreeResult).

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_INVALID_ADDRESS
The lpvOriginal parameter does not point to a previously allocated buffer.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_OUT_OF_MEMORY
There is not enough memory available to satisfy the request.

See also WFMAllocateBuffer, WFMFreeBuffer, WFSFreeResult and Section 3.13.

6.3 WFMFreeBuffer

HRESULT WFMFreeBuffer(lpvData)

Releases the memory buffer(s) allocated by WFMAllocateBuffer and WFMAllocateMore.

Parameters LPVOID lpvData
Address of the memory buffer to free.

Comments See WFMAllocateBuffer and WFSFreeResult. This function frees a set of one or more
linked buffers, as does the WFSFreeResult API function, except that it is used by service
providers to free memory that they have allocated for "private" use, via the
WFMAllocateBuffer and WFMAllocateMore functions.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_INVALID_BUFFER
The lpvData parameter is not a pointer to an allocated buffer structure.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

See also WFMAllocateBuffer, WFMAllocateMore, WFSFreeResult and Section 3.13.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 89

6.4 WFMGetTraceLevel

HRESULT WFMGetTraceLevel(hService, lpdwTraceLevel)

Returns the trace level associated with the specified hService (at run time). See WFMSetTraceLevel.

Parameters HSERVICE hService
Handle to the service provider as returned by WFSOpen or WFSAsyncOpen.

 LPDWORD lpdwTraceLevel
Pointer to the value defining the current trace level (returned parameter).

Mode Immediate

Comments This function returns the current tracing levels in the XFS Manager and the service provider
specified by hService. See WFMSetTraceLevel.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

See Also WFMSetTraceLevel, WFSOpen, WFSAsyncOpen

6.5 WFMKillTimer

HRESULT WFMKillTimer(wTimerID)

Cancels the timer identified by the wTimerID parameter. Any pending WFS_TIMER_EVENT message
associated with the timer is removed from the message queue.

Parameters WORD wTimerID
ID of the timer to be canceled.

Comments See WFMSetTimer.

Error Codes If the function return is not WFS_SUCCESS, it is the following error condition:

WFS_ERR_INVALID TIMER
The usTimerID parameter does not correspond to a currently active timer.

6.6 WFMOutputTraceData

HRESULT WFMOutputTraceData(lpszData)

Requests the XFS Manager to output the specified data to the current trace destination.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 90

Parameters LPSTR lpszData
Pointer to a null-terminated string containing the trace data.

Comments Normally used by a service provider that has been requested via WFMSetTraceLevel to trace
its operation. The XFS Manager adds standard header information (timestamp, etc.) to the data
before writing it to the trace stream. Note that the XFS Manager also writes data to the trace
stream if the appropriate trace level(s) have been requested.

Error Codes If the function return is not WFS_SUCCESS, it is the following error condition:

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 91

6.7 WFMReleaseDLL

HRESULT WFMReleaseDLL(hProvider)

Notifies the XFS Manager that the service provider is available to be unloaded from memory.

Parameters HPROVIDER hProvider
Handle to the service provider, obtained from the XFS Manager in the WFPOpen call.

Comments This function initiates the process in which the service provider is unloaded from memory by
the XFS Manager. However, note that the Manager must issue the WFPUnloadService
function to the service provider before it actually unloads the service provider DLL. The
recommended procedure is as follows:

 The service provider finishes processing the WFPClose for its last open session
 The SP does appropriate cleanup (deallocating memory, killing separate threads, etc.)
 The SP posts the WFS_CLOSE_COMPLETE message for the final close
 The SP calls WFMReleaseDLL, and after the return from this call, does nothing other

than return from the procedure that called WFMReleaseDLL
 The XFS Manager calls WFPUnloadService, verifying that the SP is in fact still ready to

be unloaded
 If the SP says OK, the XFS Manager unloads the SP DLL

Error Codes If the function return is not WFS_SUCCESS, it is the following error condition:

WFS_ERR_INVALID_HPROVIDER
The hProvider parameter is not a valid provider handle.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 92

6.8 WFMSetTimer

HRESULT WFMSetTimer(hWnd, lpContext, dwTimeVal, lpwTimerID)

Starts a system timer.

Parameters HWND hWnd
The window to which the requested timer message is to be posted.

 LPVOID lpContext
Context pointer supplied by the service provider requesting the timer; may be NULL.

 DWORD dwTimeVal
Timer value (in milliseconds).

 LPWORD lpwTimerID
Pointer to the timer identifier (returned parameter).

Comments The WFMSetTimer function requests the XFS Manager to start a system timer with the
specified time value; when that time interval expires, the XFS Manager posts a
WFS_TIMER_EVENT message to the specified hWnd, containing the wTimerID value and
the lpContext pointer.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 93

6.9 WFMSetTraceLevel

HRESULT WFMSetTraceLevel(hService, dwTraceLevel)

Sets the specified trace level(s) at run time; to be used for debugging and testing purposes.

Parameters HSERVICE hService
Handle to the service provider as returned by WFSOpen or WFSAsyncOpen.

 DWORD dwTraceLevel
The level(s) of tracing being requested. See below.

Mode Immediate

Comments Issuing WFMSetTraceLevel for a service enables tracing on that service at various levels.
Five standard trace levels are predefined:

 Trace all input and output parameters of all API function calls using the specified hService.

 Trace all input and output parameters of all API function calls associated with the service
provider identified by the specified hService, not just the ones associated with the specified
hService.

 Trace all input and output parameters of all SPI function calls associated with the specified
hService, as well as all notification and event messages generated by the service provider for
the hService.

 As for WFS_TRACE_ALL_API, but trace all SPI, notification and event activity on the
service provider, not just that associated with the specified hService.

 Trace the support functions (WFMxxxxx) of the XFS Manager.

 Other standard trace levels may be defined in the future, and a range of trace level values (the
high order 16 bits of this parameter) is reserved for use by individual service providers.
Examples of other functions that may be traced include network messages, interactions
between the service provider and service, and device interface interaction.

 Trace level values can be ORed together in a single dwTraceLevel parameter to request more
than one kind of tracing be started. A NULL value stops all tracing.

 If more than one process may be using the trace facility, this function should always be
preceded with a call to the WFMGetTraceLevel function. This value returned by this
function is ORed together with the new trace level(s), and the resulting value is used with
WFMSetTraceLevel, thus adding the new trace level(s) to whatever the existing trace level(s)
had been,

 This function has the highest priority to the XFS Manager and the service provider; they
activate the trace as soon as possible. Note that the XFS Manager performs all the traces
defined above, other than the completion and event messages posted by the service providers.

 WFSOpen and WFSAsyncOpen also include an option to set these trace levels, to allow the
open process itself to be traced.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_TRACELEVEL
The dwTraceLevel parameter does not correspond to a valid trace level or set of levels.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 94

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

See Also WFMGetTraceLevel, WFPSetTraceLevel, WFSOpen, WFSAsyncOpen

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 95

7. Configuration Functions

See Section 3.7 for the overall discussion of configuration information. The configuration functions are used by
service providers and applications to write and retrieve the configuration information for a WOSA/XFS
subsystem, which is stored in a hierarchical structure called the XFS configuration registry. The structure and
the functions are based on the Win32 Registry architecture and API functions, and are implemented in Windows
NT and future versions of Windows using the Registry and the associated functions. For Win32s-based
implementations on Windows 3.1 and Windows for Workgroups, a subset of the functionality described here
will be available; see the SDK for the definition of this subset.

The logical structure of the configuration information is shown below.

The XFS Manager key has the following optional values:

 TraceFile the name of the file containing trace data. If this value is not set in the
 configuration, trace data is written to the default file path\name
 C:\XFSTRACE.LOG.

 ShareFilename the name of the memory mapped file used by the memory management functions
 of the XFS Manager.

 ShareFilesize the size of the memory mapped file used by the memory management functions
 of the XFS Manager.

Some additional values could be also defined in the WOSA/XFS SDK release notes. Please refer to the related
document for more information.

A logical service key has three mandatory values:

 class the service class of the logical service. The standard values are described in the
Service Class Definition Document and in the service class include files.

 type the service type of the logical service; the standard values are in the SDK

 provider the name of the service provider that provides the logical service
 (the key name of the corresponding service provider key)

A service provider key also has three mandatory values:

 dllname the name of the file containing the service provider DLL

 vendor_name the name of the supplier of this service provider

 version the version number of this service provider

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 96

WOSA/XFS Registry
Root

Second Level Keys Third Level Keys Values

WOSA/XFS_ROOT
 XFS_MANAGER
 TraceFile=<path-name>\<trace-file-
 name>
 ShareFilename=<path-name>\
 <share-file-name>
 ShareFilesize=<file size in bytes>

 LOGICAL_SERVICES
 <Logical Service Name>
 class=<service class>
 type=<service type>
 provider=<provider name>
 < optional values >

 SERVICE_PROVIDERS
 <Provider Name>
 dllname=< DLL name>
 vendor_name=<vendor name>
 version=<version>
 < optional values >

 < other keys >

There is one of these
keys for each logical
service accessible in
this system.

There is one of these
keys for each service
provider accessible in
this system.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 97

7.1 WFMCloseKey

HRESULT WFMCloseKey (hKey)

Closes the specified key.

Parameters HKEY hKey
Handle to the currently open key that is to be closed.

Comments The hkey handle can not be used after it has been closed, because it will no longer be valid.
Note that it is not valid to close the XFS root key (passing WFS_CFG_HKEY_XFS_ROOT
as value for hkey parameter).

Error Codes If the function return is not WFS_SUCCESS, it is the following error condition:

WFS_ERR_CFG_INVALID_HKEY
The specified hKey parameter does not correspond to a currently open key, or it is the XFS
root.

7.2 WFMCreateKey

HRESULT WFMCreateKey (hKey, lpszSubKey, phkResult, lpdwDisposition)

Creates a new key, or if the specified key exists, opens it.

Parameters HKEY hKey
Handle to a currently open key, or the predefined handle value:
 WFS_CFG_HKEY_XFS_ROOT
The key opened or created by this function is a subkey of the key identified by this
parameter.

 LPSTR lpszSubKey
Pointer to a null-terminated string containing the name of the key to be created or opened.

 PHKEY phkResult
Pointer to a variable that receives the handle of the created or opened key.

 LPDWORD lpdwDisposition
Pointer to a variable that receives one of the disposition values:
 WFS_CFG_CREATED_NEW_KEY
 WFS_CFG_OPENED_EXISTING_KEY

Comments If this function creates a new key, it has no values. The WFMSetValue function is used to
create values.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_CFG_INVALID_HKEY
The specified hKey parameter does not correspond to a currently open key.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 98

7.3 WFMDeleteKey

HRESULT WFMDeleteKey (hKey, lpszSubKey)

Deletes the specified key. This function cannot delete a key that has subkeys.

Parameters HKEY hKey
Handle to a currently open key, or the predefined handle value:
 WFS_CFG_HKEY_XFS_ROOT
The key specified by the lpszSubKey parameter must be a subkey of the key identified by
this parameter.

 LPSTR lpszSubKey
Pointer to a null-terminated string specifying the name of the key to be deleted.

Comments If this function succeeds, the specified key is removed from the configuration information.
The entire key, including all its values, is removed.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CFG_INVALID_HKEY
The specified hKey parameter does not correspond to a currently open key.

WFS_ERR_CFG_INVALID_SUBKEY
The key specified by lpszSubKey does not exist.

WFS_ERR_CFG_KEY_NOT_EMPTY
The specified key has subkeys and cannot be deleted. The subkeys must be deleted first.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

7.4 WFMDeleteValue

HRESULT WFMDeleteValue (hKey, lpszValue)

Deletes the specified value (both name and data).

Parameters HKEY hKey
Handle to a currently open key, or the predefined handle value:
 WFS_CFG_HKEY_XFS_ROOT

 LPSTR lpszValue
Pointer to a null-terminated string specifying the name of the value to be deleted.

Comments The specified value is removed from the specified open key. The WFMSetValue function is
used to create or modify values.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CFG_INVALID_HKEY
The specified hKey parameter does not correspond to a currently open key.

WFS_ERR_CFG_INVALID_VALUE
The specified value does not exist within the specified open key.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 99

7.5 WFMEnumKey

HRESULT WFMEnumKey (hKey, iSubKey, lpszName, lpcchName, lpftLastWrite)

Enumerates the subkeys of the specified open key. Retrieves information about one subkey each time it is
called.

Parameters HKEY hKey
Handle to a currently open key, or the predefined handle value:
 WFS_CFG_HKEY_XFS_ROOT
The keys enumerated by this function are subkeys of the key identified by this parameter.

 DWORD iSubKey
The index of the subkey to retrieve. This parameter should be zero for the first call to this
function, then incremented for each subsequent call, in order to enumerate all the subkeys of
the specified open key.

Because subkeys are not ordered, any new subkey will have an arbitrary index. This means
that the function may return subkeys in any order.

 LPSTR lpszName
Pointer to a buffer that receives the name of the subkey, including the terminating null
character.

 LPDWORD lpcchName
Pointer to a variable that specifies the size, in characters, of the buffer specified by the
lpszName parameter, including the terminating null character. When the function returns,
this variable contains the the number of characters actually stored in the buffer, not
including the terminating null character.

 PFILETIME lpftLastWrite
Pointer to a variable that receives the time the enumerated subkey was last written to, in the
form of a FILETIME structure (see Microsoft Win32 Programmer's Reference, Vol. 5):

Comments While a program is using this function iteratively, it should not call any other configuration
functions that would change the key being enumerated.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CFG_INVALID_HKEY
The specified hKey parameter does not correspond to a currently open key.

WFS_ERR_CFG_NO_MORE_ITEMS
There are no more subkeys to be returned (the iSubKey parameter is greater than the index
of the last subkey).

WFS_ERR_CFG_NAME_TOO_LONG
The length of the name to be returned exceeds the length of the buffer.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 100

7.6 WFMEnumValue

HRESULT WFMEnumValue (hKey, iValue, lpszValue, lpcchValue, lpszData, lpcchData)

Enumerates the values of the specified open key. Retrieves the name and data for one value each time it is
called.

Parameters HKEY hKey
Handle to a currently open key, or the predefined handle value:
 WFS_CFG_HKEY_XFS_ROOT
The value enumerated by this function is a value of the key identified by this parameter.

 DWORD iValue
The index of the value to retrieve. This parameter should be zero for the first call to this
function, then incremented for each subsequent call, in order to enumerate all the values of
the specified open key.

Because values are not ordered, any new value will have an arbitrary index. This means that
the function may return values in any order.

 LPSTR lpszValue
Pointer to a buffer that receives the name of the value, including the terminating null
character.

 LPDWORD lpcchValue
Pointer to a variable that specifies the size, in characters, of the buffer pointed to by the
lpszValue parameter. This size should include the terminating null character. When the
function returns, this variable contains the the number of characters actually stored in the
buffer, not including the terminating null character.

 LPSTR lpszData
Pointer to a buffer that receives the data for the value entry, including the terminating null
character. This parameter can be NULL, if the data is not required.

 LPDWORD lpcchData
Pointer to a variable that specifies the size, in characters, of the buffer pointed to by the
lpszData parameter, including the terminating null character. When the function returns,
this variable contains the the number of characters actually stored in the buffer, not
including the terminating null character. Ignored if lpszData is NULL.

Comments While a program is using this function iteratively, it should not call any other configuration
functions that would change the key being queried.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CFG_INVALID_HKEY
The specified hKey parameter does not correspond to a currently open key.

WFS_ERR_CFG_NO_MORE_ITEMS
There are no more values to be returned (the iValue parameter is greater than the index of
the last value).

WFS_ERR_CFG_NAME_TOO_LONG
The length of the name to be returned exceeds the length of the buffer.

WFS_ERR_CFG_VALUE_TOO_LONG
The length of the value to be returned exceeds the length of the buffer.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 101

7.7 WFMOpenKey

HRESULT WFMOpenKey (hKey, lpszSubKey, phkResult)

Opens the specified key.

Parameters HKEY hKey
Handle to a currently open key, or the predefined handle value:
 WFS_CFG_HKEY_XFS_ROOT
The key opened by this function is a subkey of the key identified by this parameter.

 LPSTR lpszSubKey
Pointer to a null-terminated string containing the name of the key to be opened. If this
parameter is NULL, or points to an empty string, the function opens another handle to the
key identified by the hKey parameter (and does not close any previously opened handles).

 PHKEY phkResult
Pointer to a variable that receives the handle of the opened key.

Comments In contrast with the WFMCreateKey function, this function does not create the specified key
if it does not exist.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CFG_INVALID_HKEY
The specified hKey parameter does not correspond to a currently open key.

WFS_ERR_CFG_INVALID_SUBKEY
The key specified by lpszSubKey does not exist.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 102

7.8 WFMQueryValue

HRESULT WFMQueryValue (hKey, lpszValueName, lpszData, lpcchData)

Retrieves the data for the value with the specified name, within the specified open key.

Parameters HKEY hKey
Handle to a currently open key, or the predefined handle value:
 WFS_CFG_HKEY_XFS_ROOT
The value data returned is within the key identified by this parameter.

 LPSTR lpszValueName
Pointer to a null-terminated string containing the name of the value being queried.

 LPSTR lpszData
Pointer to a buffer that receives the data for the value entry, including the terminating null
character.

 LPDWORD lpcchData
Pointer to a variable that specifies the size, in characters, of the buffer pointed to by the
lpszData parameter, including the terminating null character. When the function returns,
this variable contains the the number of characters actually stored in the buffer, not
including the terminating null character.

Comments

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CFG_INVALID_HKEY
The specified hKey parameter does not correspond to a currently open key.

WFS_ERR_CFG_INVALID_NAME
The value specified by the lpszValueName parameter does not exist in the specified key.

WFS_ERR_CFG_VALUE_TOO_LONG
The length of the value to be returned exceeds the length of the buffer.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 103

7.9 WFMSetValue

HRESULT WFMSetValue (hKey, lpszValueName, lpszData, cchData)

Stores data in the specified value of the specified key. If the value does not exist, it is created.

Parameters HKEY hKey
Handle to a currently open key, or the predefined handle value:
 WFS_CFG_HKEY_XFS_ROOT
The value set or created is within the key identified by this parameter.

 LPSTR lpszValueName
Pointer to a null-terminated string containing the name of the value being set. If a value
with this name does not already exist in the specified key, it is added to the key.

 LPSTR lpszData
Pointer to a buffer containing the data (a null-terminated character string) to be stored with
the specified value name.

 DWORD cchData
The size, in characters, of the string pointed to by the lpszData parameter, including the
terminating null character.

Comments Value lengths are limited by available memory. Long values (more than 2048 bytes) should be
stored as files with the filenames stored in the configuration information.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CFG_INVALID_HKEY
The specified hKey parameter does not correspond to a currently open key.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 104

8. Data Structures

8.1 WFSRESULT

This structure has three functions:
 It is the parameter which returns the results of the synchronous WFSLock, WFSExecute and WFSGetInfo

commands.
 It is pointed to by all command completion messages, and delivers completion status (as a result handle) and

results data (if any) for all asynchronous API and SPI calls.
 It is pointed to by all event notification messages to deliver their contents.

Note that even though in many cases one or more members of this structure are not used, the adoption of a
single, standard structure for request results simplifies the implementation and maintenance of applications,
service providers and the XFS Manager itself.

The members of this structure are:

Field Description

RequestID Request ID of the completed command; not used for event notifications other than
Execute events

hService Service handle identifying the session that created the result
tsTimestamp Time the event occurred (local time, in a Win32 SYSTEMTIME structure)
hResult Result handle (note that for synchronous WFSExecute and WFSGetInfo commands,

this value is identical to the synchronous function return value)
u.dwCommandCode WFSExecute “command” code or WFSGetInfo “category” code; not used for other

command completions
u.dwEventID ID of the event (for unsolicited events)
lpBuffer Pointer to the results of the command (if any) or the contents of the event notification

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 105

8.2 WFSVERSION

This structure is used to return version information from WFSStartUp, WFSOpen and WFPOpen.

The members of this structure are (note that this structure is used to report version information for three distinct
WOSA/XFS interfaces: API, SPI, and the service-specific interface):

Element Usage

wVersion The version number to be used.
wLowVersion The lowest version number that the called DLL can support.
wHighVersion The highest version number that the called DLL can support.
szDescription A null-terminated ASCII string into which the called DLL copies a description of the

implementation. The text (up to 256 characters in length) may contain any characters: the
most likely use that an application will make of this is to display it (possibly truncated) in a
status message.

szSystemStatus A null-terminated ASCII string into which the called DLL copies relevant status or
configuration information. Not to be considered as an extension of the szDescription field.
Used only if the information might be useful to the user or support staff.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 106

9. Messages

This section defines the Windows messages used in the WOSA/XFS subsystem.

9.1 Command Completions and Events

The following messages are sent to indicate:
 the completion of an asynchronous command, or
 the occurrence of an unsolicited event (execute, service, user, or system events).

All these messages have the same definition:
 wParam: not used
 lParam: points to a WFSRESULT data structure

9.1.1 Command Completion Messages

WFS_OPEN_COMPLETE

WFS_CLOSE_COMPLETE

WFS_LOCK_COMPLETE

WFS_UNLOCK_COMPLETE

WFS_REGISTER_COMPLETE

WFS_DEREGISTER_COMPLETE

WFS_GETINFO_COMPLETE

WFS_EXECUTE_COMPLETE

9.1.2 Event Messages

WFS_EXECUTE_EVENT

WFS_SERVICE_EVENT

WFS_USER_EVENT

WFS_SYSTEM_EVENT

9.2 Timer Events

The timer event message has the following format (see WFMSetTimer, WFMKillTimer):

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 107

9.3 Device Status Changes

Status changes of logical services (which typically reflect changes in physical devices) are reported as system
events. This is in addition to being reported by the WFS_INF_xxx_STATUS query of the WFSGetInfo or
WFSAsyncGetInfo functions. The WFSRESULT data structure (defined in Section 8.1) is utilized as follows:

Field Description
RequestID (not used)
hService Service handle identifying the session that created the result
tsTimestamp Time the status change occurred (local time, in a Win32 SYSTEMTIME structure)
hResult (not used)
u.dwEventID = WFS_SYSE_DEVICE_STATUS
lpBuffer Pointer to a WFSDEVSTATUS structure:

The members of this structure are:

Field Description

lpszPhysicalName Pointer to the physical service name of the service that changed its state.
lpszWorkstationName Pointer to the name of the workstation in which the logical service name is defined.
dwState Specifies the new state of the physical device managed by the service as one of the

following:
Value Meaning
WFS_STAT_DEVONLINE The device is online (i.e., powered on and
operable).
WFS_STAT_DEVOFFLINE The device is offline (e.g., the operator has taken

the device offline).
WFS_STAT_DEVPOWEROFF The device is powered off.
WFS_STAT_DEVNODEVICE There is no device connected.
WFS_STAT_DEVHWERROR The device is inoperable due to a hardware error.
WFS_STAT_DEVUSERERROR The device is inoperable because a person is

preventing proper device operation.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 108

9.4 Undeliverable Messages

If a command completion or event message cannot be delivered, it is reported as a system event. The
WFSRESULT data structure (defined in Section 8.1) is utilized as follows:

Field Description

RequestID (not used)
hService Service handle identifying the session associated with the completion or event
tsTimestamp Time the event occurred (local time, in a Win32 SYSTEMTIME structure)
hResult (not used)
u.dwEventID = WFS_SYSE_UNDELIVERABLE_MSG
lpBuffer Pointer to a WFSUNDEVMSG structure:

The members of this structure are:

Field Description

lpszLogicalName Pointer to the logical service name of the service that generated the original
undeliverable message

lpszWorkstationName Pointer to the the name of the workstation in which the logical service name is defined
lpszAppID Pointer to the the application ID associated with the session that generated the original

message
dwSize The size in bytes of the following description
lpbDescription Pointer to a vendor-specific description of the reason why the message could not be

delivered
dwMsg The message identifier of the original message
lpWFSResult Pointer to the WFSRESULT structure of the original message (which has the lpBuffer

parameter set to NULL)

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 109

9.5 Application Disconnect

If the WOSA/XFS subsystem loses connection to an application, it closes the session (see Section 3.6) and
generates this system event. The WFSRESULT data structure (defined in Section 8.1) is utilized as follows:

Field Description

RequestID (not used)
hService Service handle identifying the session associated with the event
tsTimestamp Time the event occurred (local time, in a Win32 SYSTEMTIME structure)
hResult (not used)
u.dwEventID = WFS_SYSE_APP_DISCONNECT
lpBuffer Pointer to a WFSAPPDISC structure:

The members of this structure are:

Field Description

lpszLogicalName Pointer to the logical service name of the service that the application was connected to
lpszWorkstationName Pointer to the the name of the workstation in which the logical service name is defined
lpszAppID Pointer to the the application ID associated with the session that generated the event

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 110

9.6 Hardware and Software Errors

Hardware and software errors are reported as system events. In most cases, this is in addition to being reported
via the WFS_ERR_HARDWARE_ERROR or the WFS_ERR_SOFTWARE_ERROR error code that is returned
when a hardware or software error occurs in the course of executing a function. The WFSRESULT data
structure (defined in Section 8.1), is utilized as follows:

Field Description

RequestID Request ID of the request being processed when the error occurred (if any)
hService Service handle identifying the session associated with the error (if any)
tsTimestamp Time the error occurred (local time, in a Win32 SYSTEMTIME structure)
hResult Result handle of the request being processed when the error occurred (if any)
u.dwEventID The ID of the error

 Value Meaning
 WFS_SYSE_HARDWARE_ERROR The error is a hardware error
 WFS_SYSE_SOFTWARE_ERROR Th error is a software error

lpBuffer Pointer to a WFSHWERROR structure:

The members of this structure are:

Field Description

lpszLogicalName Pointer to the logical service name of the service that generated the error (if any)
lpszWorkstationName Pointer to the the name of the workstation in which the logical service name is defined (if

any)
lpszAppID Pointer to the application ID associated with the session that generated the error (if any)
dwSize The size in bytes of the following description
lpbDescription Pointer to a vendor-specific description of the error

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 111

9.7 Version Negotiation Failures

Failures in version negotiation are reported as system events. This is in addition to being reported by the version
error code returned by the WFSStartUp or WFSOpen functions. The WFSRESULT data structure (defined in
Section 8.1) is utilized as follows:

Field Description
RequestID (not used)
hService (not used)
tsTimestamp Time the error occurred (local time, in a Win32 SYSTEMTIME structure)
hResult The version error code (e.g., WFS_ERR_SPI_VER_TOO_HIGH)
u.dwEventID = WFS_SYSE_VERSION_ERROR
lpBuffer Pointer to a WFSVRSNERROR structure:

The members of this structure are:

Field Description

lpszLogicalName Pointer to the logical service name of the service being opened (NULL if WFSStartUp)
lpszWorkstationName Pointer to the name of the workstation in which the application made the WFSStartUp

or WFSOpen request
lpszAppID Pointer to the application ID from the open request that failed (NULL if WFSStartUp)
dwSize The size in bytes of the following description
lpbDescription Pointer to a vendor-specific description of the version negotiation failure
lpWFSVersion Pointer to the WFSVERSION structure reporting the results of the version negotiation

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 112

10. Error Codes

The following are the error codes that can be returned from a call to a WOSA/XFS API or SPI function, either as
a function return or in a result structure pointed to by a completion message. Errors from service-specific
commands are defined in the specifications for each service class.

WFS_ERR_ALREADY_STARTED
A WFSStartUp has already been issued by the application, without an intervening WFSCleanUp.

WFS_ERR_API_VER_TOO_HIGH
The range of versions of WOSA/XFS API support requested by the application is higher than any supported by
this particular XFS Manager implementation.

WFS_ERR_API_VER_TOO_LOW
The range of versions of WOSA/XFS API support requested by the application is lower than any supported by
this particular XFS Manager implementation.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest or WFSCancelBlockingCall.

WFS_ERR_CFG_INVALID_HKEY
The specified hKey parameter does not correspond to a currently open key.

WFS_ERR_CFG_INVALID_NAME
The value specified by the lpszValueName parameter does not exist in the specified key.

WFS_ERR_CFG_INVALID_SUBKEY
The key specified by lpszSubKey does not exist.

WFS_ERR_CFG_INVALID_VALUE
The specified value does not exist within the specified open key.

WFS_ERR_CFG_KEY_NOT_EMPTY
The specified key has subkeys and cannot be deleted. The subkeys must be deleted first.

WFS_ERR_CFG_NAME_TOO_LONG
The length of the name to be returned exceeds the length of the buffer.

WFS_ERR_CFG_NO_MORE_ITEMS
There are no more subkeys to be returned (the iSubKey parameter is greater than the index of the last subkey).

WFS_ERR_CFG_VALUE_TOO_LONG
The length of the value to be returned exceeds the length of the buffer.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_DEV_NOT_READY
The function required device access, and the device was not ready or timed out.

WFS_ERR_HARDWARE_ERROR
The function required device access, and an error occured on the device.

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occured on the software.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_ADDRESS
The lpvOriginal parameter does not point to a previously allocated buffer.

WFS_ERR_INVALID_APP_HANDLE
The specified application handle is not valid, i.e., was not created by a preceding create call.

WFS_ERR_INVALID_BUFFER
The lpvData parameter is not a pointer to an allocated buffer structure.

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 113

WFS_ERR_INVALID_CATEGORY
The dwCategory issued is not supported by this service class.

WFS_ERR_INVALID_COMMAND
The dwCommand issued is not supported by this service class.

WFS_ERR_INVALID_EVENT_CLASS
The dwEventClass parameter specifies one or more event classes not supported by the service.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HPROVIDER
The hProvider parameter is not a valid provider handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_HWNDREG
The hWndReg parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_INVALID_DATA
The data structure passed as input parameter contains invalid data..

WFS_ERR_INVALID_REQ_ID
The RequestID parameter does not correspond to an outstanding request on the service.

WFS_ERR_INVALID_RESULT
The lpResult parameter is not a pointer to an allocated WFSRESULT structure.

WFS_ERR_INVALID_SERVPROV
The file containing the service provider is invalid or corrupted.

WFS_ERR_INVALID_TIMER
The hWnd and usTimerID parameters do not correspond to a currently active timer.

WFS_ERR_INVALID_TRACELEVEL
The dwTraceLevel parameter does not correspond to a valid trace level or set of levels.

WFS_ERR_LOCKED
The service is locked under a different hService.

WFS_ERR_NO_BLOCKING_CALL
There is no outstanding blocking call for the specified thread.

WFS_ERR_NO_SERVPROV
The file containing the service provider does not exist.

WFS_ERR_NO_SUCH_THREAD
The specified thread does not exist.

WFS_ERR_NO_TIMER
The timer could not be created.

WFS_ERR_NOT_LOCKED
The application requesting a service be unlocked had not previously performed a successful WFSLock or
WFSAsyncLock.

WFS_ERR_NOT_OK_TO_UNLOAD
The XFS Manager may not unload the service provider DLL.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_NOT_REGISTERED
The specified hWndReg window was not registered to receive messages for any event classes.

WFS_ERR_OP_IN_PROGRESS

WOSA/XFS API/SPI Reference, Revision2.00 November 11, 1996 114

A blocking operation is in progress on the thread; only WFSCancelBlockingCall and WFSIsBlocking are
permitted at this time.

WFS_ERR_OUT_OF_MEMORY
There is not enough memory available to satisfy the request.

WFS_ERR_SERVICE_NOT_FOUND
The logical name is not a valid service provider name.

WFS_ERR_SPI_VER_TOO_HIGH
The range of versions of WOSA/XFS SPI support requested by the XFS Manager is higher than any supported
by the service provider for the logical service being opened.

WFS_ERR_SPI_VER_TOO_LOW
The range of versions of WOSA/XFS SPI support requested by the XFS Manager is lower than any supported by
the service provider for the logical service being opened.

WFS_ERR_SRVC_VER_TOO_HIGH
The range of versions of the service-specific interface support requested by the application is higher than any
supported by the service provider for the logical service being opened.

WFS_ERR_SRVC_VER_TOO_LOW
The range of versions of the service-specific interface support requested by the application is lower than any
supported by the service provider for the logical service being opened.

WFS_ERR_TIMEOUT
The timeout interval expired.

WFS_ERR_UNSUPP_CATEGORY
The dwCategory issued, although valid for this service class, is not supported by this service provider.

WFS_ERR_UNSUPP_COMMAND
The dwCommand issued, although valid for this service class, is not supported by this service provider or device.

WFS_ERR_VERSION_ERROR_IN_SRVC
Within the service, a version mismatch of two modules occurred.

WOSA/XFS API/SPI Reference, Revision 2.00 November 11, 1996 A - 1

11. Appendix A - Planned Enhancements and Extensions

This section describes functions and facilities that are not fully defined in this version of the WOSA Extensions
for Financial Services specification; modifications and complete definitions will be supplied in later versions.
Vendor and user input is encouraged on these functions and facilities, as well as suggestions as to additional
functionality.

WOSA/XFS currently includes specifications for access to the key classes of financial peripherals for attended
and self-service environments. These existing specifications will be extended and enhanced based on vendor
and user experience with them. The Service Class Definition Document lists the classes of devices or services
that, together with others that customers and vendors request, will be evaluated for inclusion in future versions of
this specification.

Also to be considered for future versions of WOSA/XFS are other types of services, such as financial transaction
messaging and management, as well as related services for financial networks such as network and systems
management and security. As with the current specification, all these capabilities will be specified for access
from the familiar, consistent Microsoft Windows user interface and programming environments. Whenever
possible, the capabilities will be incorporated into the family of standard WOSA elements, and will utilize
existing formal and de facto standards.
Another portion of the WOSA WOSA/XFS API set will deal with administration issues.

11.1 Event and System Management

The WOSA/XFS subsystem will need additional facilities for managing exception conditions (i.e., those that are
not anticipated in the error codes, events, etc., that are defined in this specification). One general facility for this
is the system event capability, as described in Sections 3.11 and 9. This will utilize a combination of one or
more functions provided by the XFS Manager and other methods for applications, the XFS Manager, service
providers, and services to report exception conditions in special circumstances (e.g., when the XFS Manager is
not available). Such conditions would presumably be monitored by a system management agent responsible for
logging and reporting them via a network management facility.

WOSA/XFS API/SPI Reference, Revision 2.00 November 11, 1996 A - 2

12. Appendix B - Banking Solutions Vendor Council Contacts

Please submit comments and questions on the WOSA Extensions for Financial Services to any of the BSVC
members or to:

Email: bsvc@microsoft.com
Fax (Europe): +49 6172 661 160 Attn: Ashley Steele

Mail: Banking Solutions Vendor Council Banking Solutions Vendor Council
 Attn: John Michael Gross Attn: Ashley Steele

 Microsoft Corporation Microsoft GmbH
 One Microsoft Way 1/1174 Siemensstraße 21
 Redmond, WA 98052 D 61352 Bad Homburg
 USA Germany

Error reports maybe sent per email to: bsvchelp@microsoft.com

Updated versions of this specification, when released, may also be requested from these contacts.

WOSA/XFS API/SPI Reference, Revision 2.00 November 11, 1996 A - 3

13. Appendix C - Other WOSA Specifications and Information

The Windows Open Services Architecture and the individual WOSA elements each have one or more
specifications or other documents either available or under development, and in most cases, an associated
Software Development Kit (SDK). The WOSA specifications or other documents that may be requested include
the ones listed below.

 WOSA Corporate Backgrounder [Microsoft part number 098-53420]
 WOSA

Extensions for Financial Services [this document]

 Windows SNA API Specifications:
[all are included in the SDK for SNA Server for Windows NT, or orderable as part number 211-074-

027]
 Windows LUA (RUI and SLI)
 Windows APPC
 Windows CPI-C
 Windows HLLAPI
 Windows CSV

 Windows Sockets Specification
 Windows RPC (Remote Procedure Call) Specification [included in the Windows NT SDK]
 ODBC (Open Database Connectivity) Specification [available as a set of Microsoft Press books]
 MAPI (Messaging API) Specification
 License Service API Specification
 Windows Telephony API Specification
 WOSA

Extensions for Real Time Market Data Specification

Most of these documents are available in the Microsoft developer services sections on the Microsoft's Internet
Informations Server www.microsoft.com, and via Internet ftp download from Microsoft's ftp server
ftp.microsoft.com. They are all included in the Microsoft Developer Network (MSDN) products: the
Development Platform (MSDN Level II subscription) and the Development Library (MSDN Level I
subscription). The Development Platform is a set of CD-ROM disks, updated at least quarterly, that contains all
Microsoft SDKs, DDKs and operating systems. This offering includes the MSDN Development Library, which
is also available separately, and contains all the documentation for the development platform (but no code), as
well as a wide variety of other technical reference material on developing software for the Windows operating
systems, including sample code.

WOSA/XFS API/SPI Reference, Revision 2.00 November 11, 1996 A - 4

14. Appendix D - C-Header files

14.1 XFSAPI.H

/**
* *
* xfsapi.h WOSA/XFS - API functions, types, and definitions *
* *
* Version 2.00 -- 11/11/96 *
* *
**/

#ifndef __inc_xfsapi__h
#define __inc_xfsapi__h

#ifdef __cplusplus
extern "C" {
#endif

/* be aware of alignment */
#pragma pack(push,1)

/****** Common ***/

#include <windows.h>

typedef unsigned short USHORT;
typedef char CHAR;
typedef short SHORT;
typedef unsigned long ULONG;
typedef unsigned char UCHAR;
typedef SHORT * LPSHORT;
typedef LPVOID * LPLPVOID;
typedef ULONG * LPULONG;
typedef USHORT * LPUSHORT;

typedef ULONG REQUESTID;
typedef REQUESTID * LPREQUESTID;

typedef HANDLE HAPP;
typedef HAPP * LPHAPP;

typedef SYSTEMTIME TIMESTAMP;

typedef USHORT HSERVICE;
typedef HSERVICE * LPHSERVICE;

typedef LONG HRESULT;
typedef HRESULT * LPHRESULT;

typedef BOOL (WINAPI * XFSBLOCKINGHOOK)(VOID);
typedef XFSBLOCKINGHOOK * LPXFSBLOCKINGHOOK;

/****** String lengths **/

#define WFSDDESCRIPTION_LEN 256
#define WFSDSYSSTATUS_LEN 256

/****** Values of WFSDEVSTATUS.fwState **********************************/

#define WFS_STAT_DEVONLINE (0)
#define WFS_STAT_DEVOFFLINE (1)
#define WFS_STAT_DEVPOWEROFF (2)
#define WFS_STAT_DEVNODEVICE (3)
#define WFS_STAT_DEVHWERROR (4)
#define WFS_STAT_DEVUSERERROR (5)
#define WFS_STAT_DEVBUSY (6)

/****** Value of WFS_DEFAULT_HAPP ***************************************/

#define WFS_DEFAULT_HAPP (0)

WOSA/XFS API/SPI Reference, Revision 2.00 November 11, 1996 A - 5

/****** Data Structures ***/

typedef struct _wfs_result
{
 REQUESTID RequestID;
 HSERVICE hService;
 TIMESTAMP tsTimestamp;
 HRESULT hResult;
 union {
 DWORD dwCommandCode;
 DWORD dwEventID;
 } u;
 LPVOID lpBuffer;
} WFSRESULT, * LPWFSRESULT;

typedef struct _wfsversion
{
 WORD wVersion;
 WORD wLowVersion;
 WORD wHighVersion;
 CHAR szDescription[WFSDDESCRIPTION_LEN+1];
 CHAR szSystemStatus[WFSDSYSSTATUS_LEN+1];
} WFSVERSION, * LPWFSVERSION;

/****** Message Structures **/

typedef struct _wfs_devstatus
{
 LPSTR lpszPhysicalName;
 LPSTR lpszWorkstationName;
 DWORD dwState;
} WFSDEVSTATUS, * LPWFSDEVSTATUS;

typedef struct _wfs_undevmsg
{
 LPSTR lpszLogicalName;
 LPSTR lpszWorkstationName;
 LPSTR lpszAppID;
 DWORD dwSize;
 LPBYTE lpbDescription;
 DWORD dwMsg;
 LPWFSRESULT lpWFSResult;
} WFSUNDEVMSG, * LPWFSUNDEVMSG;

typedef struct _wfs_appdisc
{
 LPSTR lpszLogicalName;
 LPSTR lpszWorkstationName;
 LPSTR lpszAppID;
} WFSAPPDISC, * LPWFSAPPDISC;

typedef struct _wfs_hwerror
{
 LPSTR lpszLogicalName;
 LPSTR lpszWorkstationName;
 LPSTR lpszAppID;
 DWORD dwSize;
 LPBYTE lpbDescription;
} WFSHWERROR, * LPWFSHWERROR;

typedef struct _wfs_vrsnerror
{
 LPSTR lpszLogicalName;
 LPSTR lpszWorkstationName;
 LPSTR lpszAppID;
 DWORD dwSize;
 LPBYTE lpbDescription;
 LPWFSVERSION lpWFSVersion;
} WFSVRSNERROR, * LPWFSVRSNERROR;

/****** Error codes **/

#define WFS_SUCCESS (0)
#define WFS_ERR_ALREADY_STARTED (-1)

WOSA/XFS API/SPI Reference, Revision 2.00 November 11, 1996 A - 6

#define WFS_ERR_API_VER_TOO_HIGH (-2)
#define WFS_ERR_API_VER_TOO_LOW (-3)
#define WFS_ERR_CANCELED (-4)
#define WFS_ERR_CFG_INVALID_HKEY (-5)
#define WFS_ERR_CFG_INVALID_NAME (-6)
#define WFS_ERR_CFG_INVALID_SUBKEY (-7)
#define WFS_ERR_CFG_INVALID_VALUE (-8)
#define WFS_ERR_CFG_KEY_NOT_EMPTY (-9)
#define WFS_ERR_CFG_NAME_TOO_LONG (-10)
#define WFS_ERR_CFG_NO_MORE_ITEMS (-11)
#define WFS_ERR_CFG_VALUE_TOO_LONG (-12)
#define WFS_ERR_DEV_NOT_READY (-13)
#define WFS_ERR_HARDWARE_ERROR (-14)
#define WFS_ERR_INTERNAL_ERROR (-15)
#define WFS_ERR_INVALID_ADDRESS (-16)
#define WFS_ERR_INVALID_APP_HANDLE (-17)
#define WFS_ERR_INVALID_BUFFER (-18)
#define WFS_ERR_INVALID_CATEGORY (-19)
#define WFS_ERR_INVALID_COMMAND (-20)
#define WFS_ERR_INVALID_EVENT_CLASS (-21)
#define WFS_ERR_INVALID_HSERVICE (-22)
#define WFS_ERR_INVALID_HPROVIDER (-23)
#define WFS_ERR_INVALID_HWND (-24)
#define WFS_ERR_INVALID_HWNDREG (-25)
#define WFS_ERR_INVALID_POINTER (-26)
#define WFS_ERR_INVALID_REQ_ID (-27)
#define WFS_ERR_INVALID_RESULT (-28)
#define WFS_ERR_INVALID_SERVPROV (-29)
#define WFS_ERR_INVALID_TIMER (-30)
#define WFS_ERR_INVALID_TRACELEVEL (-31)
#define WFS_ERR_LOCKED (-32)
#define WFS_ERR_NO_BLOCKING_CALL (-33)
#define WFS_ERR_NO_SERVPROV (-34)
#define WFS_ERR_NO_SUCH_THREAD (-35)
#define WFS_ERR_NO_TIMER (-36)
#define WFS_ERR_NOT_LOCKED (-37)
#define WFS_ERR_NOT_OK_TO_UNLOAD (-38)
#define WFS_ERR_NOT_STARTED (-39)
#define WFS_ERR_NOT_REGISTERED (-40)
#define WFS_ERR_OP_IN_PROGRESS (-41)
#define WFS_ERR_OUT_OF_MEMORY (-42)
#define WFS_ERR_SERVICE_NOT_FOUND (-43)
#define WFS_ERR_SPI_VER_TOO_HIGH (-44)
#define WFS_ERR_SPI_VER_TOO_LOW (-45)
#define WFS_ERR_SRVC_VER_TOO_HIGH (-46)
#define WFS_ERR_SRVC_VER_TOO_LOW (-47)
#define WFS_ERR_TIMEOUT (-48)
#define WFS_ERR_UNSUPP_CATEGORY (-49)
#define WFS_ERR_UNSUPP_COMMAND (-50)
#define WFS_ERR_VERSION_ERROR_IN_SRVC (-51)
#define WFS_ERR_INVALID_DATA (-52)
#define WFS_ERR_SOFTWARE_ERROR (-53)
#define WFS_ERR_CONNECTION_LOST (-54)

#define WFS_INDEFINITE_WAIT 0

/****** Messages **/

/* Message-No = (WM_USER + No) */

#define WFS_OPEN_COMPLETE (WM_USER + 1)
#define WFS_CLOSE_COMPLETE (WM_USER + 2)
#define WFS_LOCK_COMPLETE (WM_USER + 3)
#define WFS_UNLOCK_COMPLETE (WM_USER + 4)
#define WFS_REGISTER_COMPLETE (WM_USER + 5)
#define WFS_DEREGISTER_COMPLETE (WM_USER + 6)
#define WFS_GETINFO_COMPLETE (WM_USER + 7)
#define WFS_EXECUTE_COMPLETE (WM_USER + 8)

#define WFS_EXECUTE_EVENT (WM_USER + 20)
#define WFS_SERVICE_EVENT (WM_USER + 21)
#define WFS_USER_EVENT (WM_USER + 22)
#define WFS_SYSTEM_EVENT (WM_USER + 23)

WOSA/XFS API/SPI Reference, Revision 2.00 November 11, 1996 A - 7

#define WFS_TIMER_EVENT (WM_USER + 100)

/****** Event Classes ***/

#define SERVICE_EVENTS (1)
#define USER_EVENTS (2)
#define SYSTEM_EVENTS (4)
#define EXECUTE_EVENTS (8)

/****** System Event IDs **/

#define WFS_SYSE_UNDELIVERABLE_MSG (1)
#define WFS_SYSE_HARDWARE_ERROR (2)
#define WFS_SYSE_VERSION_ERROR (3)
#define WFS_SYSE_DEVICE_STATUS (4)
#define WFS_SYSE_APP_DISCONNECT (5)

/****** WOSA/XFS Trace Level **/

#define WFS_TRACE_API 0x00000001
#define WFS_TRACE_ALL_API 0x00000002
#define WFS_TRACE_SPI 0x00000004
#define WFS_TRACE_ALL_SPI 0x00000008
#define WFS_TRACE_MGR 0x00000010

/****** API functions ***/

HRESULT extern WINAPI WFSCancelAsyncRequest (HSERVICE hService, REQUESTID
RequestID);

HRESULT extern WINAPI WFSCancelBlockingCall (DWORD dwThreadID);

HRESULT extern WINAPI WFSCleanUp ();

HRESULT extern WINAPI WFSClose (HSERVICE hService);

HRESULT extern WINAPI WFSAsyncClose (HSERVICE hService, HWND hWnd, LPREQUESTID
lpRequestID);

HRESULT extern WINAPI WFSCreateAppHandle (LPHAPP lphApp);

HRESULT extern WINAPI WFSDeregister (HSERVICE hService, DWORD dwEventClass, HWND
hWndReg);

HRESULT extern WINAPI WFSAsyncDeregister (HSERVICE hService, DWORD dwEventClass,
HWND hWndReg, HWND hWnd, LPREQUESTID lpRequestID);

HRESULT extern WINAPI WFSDestroyAppHandle (HAPP hApp);

HRESULT extern WINAPI WFSExecute (HSERVICE hService, DWORD dwCommand, LPVOID
lpCmdData, DWORD dwTimeOut, LPWFSRESULT * lppResult);

HRESULT extern WINAPI WFSAsyncExecute (HSERVICE hService, DWORD dwCommand, LPVOID
lpCmdData, DWORD dwTimeOut, HWND hWnd, LPREQUESTID lpRequestID);

HRESULT extern WINAPI WFSFreeResult (LPWFSRESULT lpResult);

HRESULT extern WINAPI WFSGetInfo (HSERVICE hService, DWORD dwCategory, LPVOID
lpQueryDetails, DWORD dwTimeOut, LPWFSRESULT * lppResult);

HRESULT extern WINAPI WFSAsyncGetInfo (HSERVICE hService, DWORD dwCategory, LPVOID
lpQueryDetails, DWORD dwTimeOut, HWND hWnd, LPREQUESTID lpRequestID);

BOOL extern WINAPI WFSIsBlocking ();

HRESULT extern WINAPI WFSLock (HSERVICE hService, DWORD dwTimeOut , LPWFSRESULT *
lppResult);

HRESULT extern WINAPI WFSAsyncLock (HSERVICE hService, DWORD dwTimeOut, HWND hWnd,
LPREQUESTID lpRequestID);

HRESULT extern WINAPI WFSOpen (LPSTR lpszLogicalName, HAPP hApp, LPSTR lpszAppID,
DWORD dwTraceLevel, DWORD dwTimeOut, DWORD dwSrvcVersionsRequired, LPWFSVERSION
lpSrvcVersion, LPWFSVERSION lpSPIVersion, LPHSERVICE lphService);

WOSA/XFS API/SPI Reference, Revision 2.00 November 11, 1996 A - 8

HRESULT extern WINAPI WFSAsyncOpen (LPSTR lpszLogicalName, HAPP hApp, LPSTR
lpszAppID, DWORD dwTraceLevel, DWORD dwTimeOut, LPHSERVICE lphService, HWND hWnd,
DWORD dwSrvcVersionsRequired, LPWFSVERSION lpSrvcVersion, LPWFSVERSION
lpSPIVersion, LPREQUESTID lpRequestID);

HRESULT extern WINAPI WFSRegister (HSERVICE hService, DWORD dwEventClass, HWND
hWndReg);

HRESULT extern WINAPI WFSAsyncRegister (HSERVICE hService, DWORD dwEventClass,
HWND hWndReg, HWND hWnd, LPREQUESTID lpRequestID);

HRESULT extern WINAPI WFSSetBlockingHook (XFSBLOCKINGHOOK lpBlockFunc,
LPXFSBLOCKINGHOOK lppPrevFunc);

HRESULT extern WINAPI WFSStartUp (DWORD dwVersionsRequired, LPWFSVERSION
lpWFSVersion);

HRESULT extern WINAPI WFSUnhookBlockingHook ();

HRESULT extern WINAPI WFSUnlock (HSERVICE hService);

HRESULT extern WINAPI WFSAsyncUnlock (HSERVICE hService, HWND hWnd, LPREQUESTID
lpRequestID);

HRESULT extern WINAPI WFMSetTraceLevel (HSERVICE hService, DWORD dwTraceLevel);

/* restore alignment */
#pragma pack(pop)

#ifdef __cplusplus
} /*extern "C"*/
#endif

#endif /* __inc_xfsapi__h */

WOSA/XFS API/SPI Reference, Revision 2.00 November 11, 1996 A - 9

14.2 XFSADMIN.H

/**
* *
* xfsadmin.h WOSA/XFS-Administration and Support functions *
* *
* Version 2.00 -- 11/11/96 *
* *
**/

#ifndef __INC_XFSADMIN__H
#define __INC_XFSADMIN__H

#ifdef __cplusplus
extern "C" {
#endif

#include <xfsapi.h>

/* be aware of alignment */
#pragma pack(push,1)

/* values of ulFlags used for WFMAllocateBuffer */

#define WFS_MEM_SHARE 0x00000001
#define WFS_MEM_ZEROINIT 0x00000002

/****** Support Functions **/

HRESULT extern WINAPI WFMAllocateBuffer(ULONG ulSize, ULONG ulFlags, LPVOID *
lppvData);

HRESULT extern WINAPI WFMAllocateMore(ULONG ulSize, LPVOID lpvOriginal, LPVOID *
lppvData);

HRESULT extern WINAPI WFMFreeBuffer(LPVOID lpvData);

HRESULT extern WINAPI WFMGetTraceLevel (HSERVICE hService, LPDWORD
lpdwTraceLevel);

HRESULT extern WINAPI WFMKillTimer(WORD wTimerID);

HRESULT extern WINAPI WFMOutputTraceData (LPSTR lpszData);

HRESULT extern WINAPI WFMReleaseDLL (HPROVIDER hProvider);

HRESULT extern WINAPI WFMSetTimer (HWND hWnd, LPVOID lpContext, DWORD dwTimeVal,
LPWORD lpwTimerID);

/* restore alignment */
#pragma pack(pop)

#ifdef __cplusplus
} /*extern "C"*/
#endif

#endif /* __INC_XFSADMIN__H */

WOSA/XFS API/SPI Reference, Revision 2.00 November 11, 1996 A - 10

14.3 XFSCONF.H

/**
* *
* xfsconf.h WOSA/XFS - definitions for the Configuration functions *
* *
* Version 2.00 -- 11/11/96 *
* *
**/

#ifndef __INC_XFSCONF__H
#define __INC_XFSCONF__H

#ifdef __cplusplus
extern "C" {
#endif

/******* Common **/

#include <xfsapi.h>

/* be aware of alignment */
#pragma pack(push,1)

// following HKEY and PHKEY are already defined in WINREG.H
// so definition has been removed
// typedef HANDLE HKEY;
// typedef HANDLE * PHKEY;

/******* Value of hKey ***/
#define WFS_CFG_HKEY_XFS_ROOT ((HKEY)1)

/******* Values of lpdwDisposition ***/
#define WFS_CFG_CREATED_NEW_KEY (0)
#define WFS_CFG_OPENED_EXISTING_KEY (1)

/******* Configuration Functions ***/
HRESULT extern WINAPI WFMCloseKey (HKEY hKey);

HRESULT extern WINAPI WFMCreateKey (HKEY hKey, LPSTR lpszSubKey, PHKEY
phkResult, LPDWORD lpdwDisposition);

HRESULT extern WINAPI WFMDeleteKey (HKEY hKey, LPSTR lpszSubKey);

HRESULT extern WINAPI WFMDeleteValue (HKEY hKey, LPSTR lpszValue);

HRESULT extern WINAPI WFMEnumKey (HKEY hKey, DWORD iSubKey, LPSTR lpszName,
LPDWORD lpcchName, PFILETIME lpftLastWrite);

HRESULT extern WINAPI WFMEnumValue (HKEY hKey, DWORD iValue, LPSTR lpszValue,
LPDWORD lpcchValue, LPSTR lpszData, LPDWORD lpcchData);

HRESULT extern WINAPI WFMOpenKey (HKEY hKey, LPSTR lpszSubKey, PHKEY phkResult);

HRESULT extern WINAPI WFMQueryValue (HKEY hKey, LPSTR lpszValueName, LPSTR
lpszData, LPDWORD lpcchData);

HRESULT extern WINAPI WFMSetValue (HKEY hKey, LPSTR lpszValueName, LPSTR
lpszData, DWORD cchData);

/* restore alignment */
#pragma pack(pop)

#ifdef __cplusplus
} /*extern "C"*/
#endif

#endif /* __INC_XFSCONF__H */

WOSA/XFS API/SPI Reference, Revision 2.00 November 11, 1996 A - 11

14.4 XFSSPI.H

/**
* *
* xfsspi.h WOSA/XFS - SPI functions, types, and definitions *
* *
* Version 2.00 -- 11/11/96 *
* *
**/

#ifndef __inc_xfsspi__h
#define __inc_xfsspi__h

#ifdef __cplusplus
extern "C" {
#endif

#include <xfsapi.h>

typedef HANDLE HPROVIDER;

#include <xfsconf.h>
#include <xfsadmin.h>

/* be aware of alignment */
#pragma pack(push,1)

/****** SPI functions **/

HRESULT extern WINAPI WFPCancelAsyncRequest (HSERVICE hService, REQUESTID
RequestID);

HRESULT extern WINAPI WFPClose (HSERVICE hService, HWND hWnd, REQUESTID ReqID);

HRESULT extern WINAPI WFPDeregister (HSERVICE hService, DWORD dwEventClass, HWND
hWndReg, HWND hWnd, REQUESTID ReqID);

HRESULT extern WINAPI WFPExecute (HSERVICE hService, DWORD dwCommand, LPVOID
lpCmdData, DWORD dwTimeOut, HWND hWnd, REQUESTID ReqID);

HRESULT extern WINAPI WFPGetInfo (HSERVICE hService, DWORD dwCategory, LPVOID
lpQueryDetails, DWORD dwTimeOut, HWND hWnd, REQUESTID ReqID);

HRESULT extern WINAPI WFPLock (HSERVICE hService, DWORD dwTimeOut, HWND hWnd,
REQUESTID ReqID);

HRESULT extern WINAPI WFPOpen (HSERVICE hService, LPSTR lpszLogicalName, HAPP
hApp, LPSTR lpszAppID, DWORD dwTraceLevel, DWORD dwTimeOut, HWND hWnd, REQUESTID
ReqID, HPROVIDER hProvider, DWORD dwSPIVersionsRequired, LPWFSVERSION lpSPIVersion,
DWORD dwSrvcVersionsRequired, LPWFSVERSION lpSrvcVersion);

HRESULT extern WINAPI WFPRegister (HSERVICE hService, DWORD dwEventClass, HWND
hWndReg, HWND hWnd, REQUESTID ReqID);

HRESULT extern WINAPI WFPSetTraceLevel (HSERVICE hService, DWORD dwTraceLevel);

HRESULT extern WINAPI WFPUnloadService ();

HRESULT extern WINAPI WFPUnlock (HSERVICE hService, HWND hWnd, REQUESTID);

/* restore alignment */
#pragma pack(pop)

#ifdef __cplusplus
} /*extern "C"*/
#endif

#endif /* __inc_xfsspi__h */

WOSA/XFS API/SPI Reference, Revision 2.00 November 11, 1996 A - 12

